Genetic analyses of captive Alala (Corvus hawaiiensis) using AFLP analyses

Open-File Report 2006-1349




Population level studies of genetic diversity can provide information about population structure, individual genetic distinctiveness and former population size. They are especially important for rare and threatened species like the Alala, where they can be used to assess extinction risks and evolutionary potential. In an ideal situation multiple methods should be used to detect variation, and these methods should be comparable across studies. In this report, we discuss AFLP (Amplified Fragment Length Polymorphism) as a genetic approach for detecting variation in the Alala , describe our findings, and discuss these in relation to mtDNA and microsatellite data reported elsewhere in this same population. AFLP is a technique for DNA fingerprinting that has wide applications. Because little or no prior knowledge of the particular species is required to carry out this method of analysis, AFLP can be used universally across varied taxonomic groups. Within individuals, estimates of diversity or heterozygosity across genomes may be complex because levels of diversity differ between and among genes. One of the more traditional methods of estimating diversity employs the use of codominant markers such as microsatellites. Codominant markers detect each allele at a locus independently. Hence, one can readily distinguish heterozygotes from homozygotes, directly assess allele frequencies and calculate other population level statistics. Dominant markers (for example, AFLP) are scored as either present or absent (null) so heterozygotes cannot be directly distinguished from homozygotes. However, the presence or absence data can be converted to expected heterozygosity estimates which are comparable to those determined by codominant markers. High allelic diversity and heterozygosity inherent in microsatellites make them excellent tools for studies of wild populations and they have been used extensively. One limitation to the use of microsatellites is that heterozygosity estimates are affected by the mutation rate at microsatellite loci, thus introducing a bias. Also, the number of loci that can be studied is frequently limited to fewer than 10. This theoretically represents a maximum of one marker for each of 10 chromosomes. Dominant markers like AFLP allow a larger fraction of the genome to be screened. Large numbers of loci can be screened by AFLP to resolve very small individual differences that can be used for identification of individuals, estimates of pairwise relatedness and, in some cases, for parentage analyses. Since AFLP is a dominant marker (can not distinguish between +/+ homozygote versus +/- heterozygote), it has limitations for parentage analyses. Only when both parents are homozygous for the absence of alleles (-/-) and offspring show a presence (+/+ or +/-) can the parents be excluded. In this case, microsatellites become preferable as they have the potential to exclude individual parents when the other parent is unknown. Another limitation of AFLP is that the loci are generally less polymorphic (only two alleles/locus) than microsatellite loci (often >10 alleles/locus). While generally fewer than 10 highly polymorphic microsatellite loci are enough to exclude and assign parentage, it might require up to 100 or more AFLP loci. While there are pros and cons to different methodologies, the total number of loci evaluated by AFLP generally offsets the limitations imposed due to the dominant nature of this approach and end results between methods are generally comparable. Overall objectives of this study were to evaluate the level of genetic diversity in the captive population of Alala, to compare genetic data with currently available pedigree information, and to determine the extent of relatedness of mating pairs and among founding individuals.

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Genetic analyses of captive Alala (Corvus hawaiiensis) using AFLP analyses
Series title:
Open-File Report
Series number:
Year Published:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Pacific Island Ecosystems Research Center
iii, 37 p.
Online Only (Y/N):
Additional Online Files (Y/N):