Factoring uncertainty into restoration modeling of in-situ leach uranium mines

Open-File Report 2009-1024
By:  and 

Links

Abstract

Postmining restoration is one of the greatest concerns for uranium in-situ leach (ISL) mining operations. The ISL-affected aquifer needs to be returned to conditions specified in the mining permit (either premining or other specified conditions). When uranium ISL operations are completed, postmining restoration is usually achieved by injecting reducing agents into the mined zone. The objective of this process is to restore the aquifer to premining conditions by reducing the solubility of uranium and other metals in the ground water. Reactive transport modeling is a potentially useful method for simulating the effectiveness of proposed restoration techniques. While reactive transport models can be useful, they are a simplification of reality that introduces uncertainty through the model conceptualization, parameterization, and calibration processes. For this reason, quantifying the uncertainty in simulated temporal and spatial hydrogeochemistry is important for postremedial risk evaluation of metal concentrations and mobility. Quantifying the range of uncertainty in key predictions (such as uranium concentrations at a specific location) can be achieved using forward Monte Carlo or other inverse modeling techniques (trial-and-error parameter sensitivity, calibration constrained Monte Carlo). These techniques provide simulated values of metal concentrations at specified locations that can be presented as nonlinear uncertainty limits or probability density functions. Decisionmakers can use these results to better evaluate environmental risk as future metal concentrations with a limited range of possibilities, based on a scientific evaluation of uncertainty.
Publication type Report
Publication Subtype USGS Numbered Series
Title Factoring uncertainty into restoration modeling of in-situ leach uranium mines
Series title Open-File Report
Series number 2009-1024
DOI 10.3133/ofr20091024
Year Published 2009
Language English
Publisher U.S. Geological Survey
Contributing office(s) U.S. Geological Survey
Description 25 p.
Online Only (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details