thumbnail

Nitrogen Loads in Groundwater Entering Back Bays and Ocean from Fire Island National Seashore, Long Island, New York

Open-File Report 2010-1081

Prepared in cooperation with the National Park Service
By:
, , and

Links

Abstract

Fire Island is a barrier island that lies south of central Long Island, N.Y. It is about 60 km (37 mi) long and 0.5 km (1/4 mi) wide and is bounded by the Great South Bay, Narrow Bay, and Moriches Bay estuaries to the north; by the Atlantic Ocean to the south; by Fire Island Inlet to the west; and by Moriches Inlet to the east (fig. 1). Fire Island National Seashore (FIIS) encompasses a 42-km (26-mi) length of Fire Island that is bordered by Robert Moses State Park to the west and Smith Point County Park to the east (fig. 2). Interspersed throughout FIIS are 17 residential beach communities that together contain about 4,100 homes. The barrier island's summer population increases 50-fold through the arrival of summer residents and vacationers. The National Park Service (NPS) has established several facilities on the island to accommodate visitors to FIIS. About 2.2 million people visit at least one of the 17 communities and (or) Smith Point County Park, the waterways surrounding Fire Island, or a FIIS facility annually (National Park Service, 2007). Combined visitation on a peak-season weekend day can be as high as 100,000 (National Park Service, 2002). Most homes and businesses in the 17 barrier-island communities discharge untreated wastewater directly to the shallow (water-table) aquifer through private septic systems and cesspools; the NPS facilities discharge wastewater to this aquifer through leach fields and cesspools. (The community of Ocean Beach (fig. 2) has a treatment plant that discharges to tidewater.) Contaminants in sewage entering the shallow groundwater move through the flow system and are ultimately discharged to adjacent marine surface waters, where they can pose a threat to coastal habitats. A contaminant of major concern is nitrogen, which is derived from fertilizers and human waste. The continuous inflow of nitrogen to surface-water bodies can lead to increased production of phytoplankton and macroalgae, which in turn can cause oxygen depletion, decreases in size of estuarine fish and shellfish communities, and loss of submerged seagrass habitat through light limitation (Valiela and others, 1992). The FIIS boundary extends roughly 1.2 km (0.8 mi) into the back-barrier estuaries of Great South Bay, Narrow Bay, and Moriches Bay (fig. 1). Within this estuarine zone are extensive areas of seagrass, shellfish, and finfish habitat, as well as intense recreational activity (Bokuniewicz and others, 1993). Management strategies for protection of these habitats require data on (1) concentrations and movement of nutrients and other human-derived contaminants that enter the groundwater system from on-site septic systems, and (2) aquifer characteristics and groundwater flow patterns. These data can then be used in three-dimensional flow models of the shallow aquifer system to predict the rates of groundwater discharge to the marine surface waters that bound Fire Island and the concentrations of nitrogen entering these water bodies from the aquifer's discharge zones. In 2004, the U.S. Geological Survey (USGS), in cooperation with the NPS, began a 3-year investigation to (1) measure groundwater levels within four local study areas at FIIS, (2) collect groundwater samples from these areas for nutrient (nitrogen) analysis, (3) develop a three-dimensional model of the hydrologic system and adjacent saltwater bodies for groundwater-flow delineation and particle tracking, and (4) apply the results of groundwater-discharge simulations to calculate the annual nitrogen loads in these discharges, particularly those entering Great South Bay, which together with the other back bays receives an estimated 80 percent of the total groundwater discharge from Fire Island. The four areas on which the investigation focused were the communities of Kismet and Robbins Rest, the NPS Visitor Center at Watch Hill, and the undeveloped Otis Pike Fire Island High Dune Wilderness (shown in panels A, B, C, and D in fig. 2); these were

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Nitrogen Loads in Groundwater Entering Back Bays and Ocean from Fire Island National Seashore, Long Island, New York
Series title:
Open-File Report
Series number:
2010-1081
Edition:
-
Year Published:
2010
Language:
ENGLISH
Publisher:
U.S. Geological Survey
Contributing office(s):
New York Water Science Center
Description:
16 p.
Online Only (Y/N):
N
Additional Online Files(Y/N):
N