Grassland birds wintering at U.S. Navy facilities in southern Texas

Open-File Report 2010-1115
Prepared in cooperation with Texas A&M University-Corpus Christi
By: , and 

Links

Abstract

Grassland birds have undergone widespread decline throughout North America during the past several decades. Causes of this decline include habitat loss and fragmentation because of conversion of grasslands to cropland, afforestation in the East, brush and shrub invasion in the Southwest and western United States, and planting of exotic grass species to enhance forage production. A large number of exotic plant species, including grasses, have been introduced in North America, but most research on the effects of these invasions on birds has been limited to breeding birds, primarily those in northern latitudes. Research on the effects of exotic grasses on birds in winter has been extremely limited.

This is the first study in southern Texas to examine and compare winter bird responses to native and exotic grasslands. This study was conducted during a period of six years (2003–2009) on United States Navy facilities in southern Texas including Naval Air Station–Corpus Christi, Naval Air Station–Kingsville, Naval Auxiliary Landing Field Waldron, Naval Auxiliary Landing Field Orange Grove, and Escondido Ranch, all of which contained examples of native grasslands, exotic grasslands, or both. Data from native and exotic grasslands were collected and compared for bird abundance and diversity; ground cover, vegetation density, and floristic diversity; bird and vegetation relationships; diversity of insects and arachnids; and seed abundance and diversity. Effects of management treatments in exotic grasslands were evaluated by comparing numbers and diversity of birds and small mammals in mowed, burned, and control areas.

To determine bird abundance and bird species richness, birds were surveyed monthly (December–February) during the winters of 2003–2008 in transects (100 meter × 20 meter) located in native and exotic grasslands distributed at all five U.S. Navy facilities. To compare vegetation in native and exotic grasslands, vegetation characteristics were measured during 2003–2008 in the same transects used for bird surveys and included five measures of ground cover, plus estimates of plant species richness, vegetation density (visual obstruction) at two different heights, and shrub numbers. These data, plus seasonal rainfall, were then used to evaluate components of variation in native and exotic grasslands. Relations between total bird numbers and bird species richness with environmental variation in native and exotic grasslands were compared. To compare diversity of arthropods in native and exotic grasslands, insects and arachnids were collected using three different methodologies (standardized sweep-net, random sweep-net, and pitfall traps) during four seasons, (2005–2006), at Naval Air Station–Corpus Christi, Naval Auxiliary Landing Field Waldron, and Naval Air Station–Kingsville. To compare seed abundance and diversity between native and exotic grasslands, seeds were collected for two winters (2004–2006) at Naval Air Station–Corpus Christi and Naval Air Station–Kingsville. To evaluate effects of management on grassland vertebrates, abundance and diversity of birds and small mammals were estimated and compared in exotic grasses subjected to mowing, burning, or no active management (control) for one full year (2008–2009).

Observations were made of 1,044 birds of 30 species in grassland transects during five winters. The Savannah Sparrow (Passerculus sandwichensis) was the most common bird, which, with 644 detections, accounted for 63 percent of all individuals identified to species. Meadowlarks (Sturnella spp.) and Le Conte’s Sparrows (Ammodramus leconteii) were the second (10 percent) and third (7 percent) most abundant bird species, respectively. Six of the seven most abundant species detected in grasslands were grassland species, and their numbers accounted for 87 percent of all birds, but 20 of the 30 species (67 percent) that used grasslands were not grassland species. Seven species observed in grassland transects during the study were Species of Conservation Concern: Le Conte’s Sparrow, Sedge Wren (Cistothorus platensis), Grasshopper Sparrow (Ammodramus savannarum), Long-billed Curlew (Numenius americanus), Sprague’s Pipit (Anthus spragueii), Cassin’s Sparrow (Aimophila cassinii), and Loggerhead Shrike (Lanius ludovicianus). Native grasslands consistently supported greater bird species richness than exotic grasslands. In one winter, exotic grasslands supported more birds than native grasslands.

Native grasslands were determined to have more forb cover, more bare ground, and greater plant species richness than exotic grasslands, whereas exotic grasslands were characterized by more grass cover and relatively greater vegetation density during dry years. Not only did these individual measures differ between native and exotic grasslands, but components of variation also differed. In native grasslands, grass density and cover contributed more to variation, whereas in exotic grasslands, non-grass vegetation was a greater component of variation. Total bird numbers and bird species richness in native grasslands were related to the principal component that contained a measure of litter cover. Total bird numbers and bird species richness in exotic grasslands indicated no significant relationships with any of the principal components of variation.

The two most common insect orders in native grasslands were Hymenoptera and Coleoptera, which accounted for 42 percent of all insects. The two most common insect orders in exotic grasslands were Hemiptera and Homoptera, which accounted for about 80 percent of all insects. Insect family richness was greater in exotic grasslands than in native grasslands in two of four seasons. Proportions of arachnid families were similar in native and exotic grasslands, but arachnid family richness was greater in exotic grasslands than in native grasslands.

Abundance of seeds was greater in exotic than in native grasslands. However, seed diversity was greater in native grasslands than in exotic grasslands.

Among the three types of management (mowed, burned, and control) applied to exotic grasses, birds were most abundant in the mowed area. Sedge Wrens, however, were never encountered in mowed sites. Meadowlarks were similarly abundant in all treatments, but Le Conte’s Sparrows were detected only in the control (unmanaged) area. Hispid cotton rats (Sigmodon hispidus) accounted for 93 percent of all rodent captures, with the number of captures peaking December through February. Hispid cotton rat numbers and total rodent numbers were greatest in control and pre-burn areas, and lowest in the mowed area. Mammal diversity, however, was greatest in the mowed habitat.

Native and exotic grasslands differed essentially in all categories (bird numbers and diversity, vegetation characteristics, components of variation, diversity of insects and arachnids, and seed abundance and diversity) used to measure and compare them. This indicates that fundamental ecosystem processes have been altered after native grasslands have undergone invasion and ultimate domination by exotic grass species. Future research in Texas grassland ecosystems is essential because: 1) Texas sustains more area in grasslands than any other state or province in the Central Flyway; 2) Texas serves as the winter destination or migration pathway for hundreds of species of birds, including winter residents and Neotropical migrants; 3) ecology, distribution, and numbers of grassland birds wintering in southern latitudes of the United States remains poorly understood; and 4) climate change threatens to further accelerate advances of invading grass species.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Grassland birds wintering at U.S. Navy facilities in southern Texas
Series title Open-File Report
Series number 2010-1115
DOI 10.3133/ofr20101115
Year Published 2010
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Columbia Environmental Research Center
Description viii, 47 p.
Google Analytic Metrics Metrics page
Additional publication details