Mapping argillic and advanced argillic alteration in volcanic rocks, quartzites, and quartz arenites in the western Richfield 1° x 2 ° quadrangle, southwestern Utah, using ASTER satellite data

Open-File Report 2012-1105
By:  and 

Links

Abstract

The Richfield quadrangle in southwestern Utah is known to contain a variety of porphyry Mo, skarn, polymetallic replacement and vein, alunite, and kaolin resources associated with 27-32 Ma calc-alkaline or 12-23 Ma bimodal volcano-plutonic centers in Neoproterozoic to Mesozoic carbonate and siliciclastic rocks. Four scenes of visible to shortwave-infrared image data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor were analyzed to generate maps of exposed clay, sulfate, mica, and carbonate minerals, and ASTER thermal infrared data were analyzed to identify quartz and carbonate minerals. Argillic and advanced argillic alteration minerals including alunite, pyrophyllite, dickite, and kaolinite were identified in both undocumented (U) and known (K) areas, including in the southern Paradise Mtns. (U); in calc-alkaline volcanic rocks in the Wah Wah Mtns. between Broken Ridge and the NG area (U/K); at Wah Wah Summit in a small zone adjacent to 33.1 Ma diorite and marble (U); in fractures cutting quartzites surrounding the 20-22 Ma Pine Grove Mo deposit (U); in volcanic rocks in the Shauntie Hills (U/K); in quartzites in the west-central San Francisco Mtns. (U); in volcanic rocks in the Black Mtns. (K); and in mainly 12-13 Ma rhyolitic rocks along a 20 km E-W belt that includes the Bible Spring fault zone west of Broken Ridge, with several small centers in the Escalante Desert to the south (U/K). Argillized Navajo Sandstone with kaolinite and (or) dickite ± alunite was mapped adjacent to calc-alkaline intrusions in the Star Range (U). Intense quartz-sericite alteration (K) with local kaolinite was identified in andesite adjacent to calc-alkaline intrusions in the Beaver Lake Mountains. Mo-bearing phyllic alteration was identified in 22.2 Ma rhyolite plugs at the center of the NG alunite area. Limestones, dolomites, and marbles were differentiated, and quartz and sericite were identified in most unaltered quartzites. Halos of argillically-altered rock ≈12 km in diameter surround the Pine Grove deposit, the central rhyolites at NG, and the North Peaks just south of the Bible Spring fault zone. A southward shift from 22-23 Ma alunite at NG in the northeast to the 12-13 Ma alunite near Broken Ridge in the southwest mirrors a shift in the locus of bimodal magmatism and is similar to the southward shift of activity from the Antelope Range to Alunite Ridge (porphyry Mo potential) in the Marysvale volcanic field farther east. The poster provided in this report compares mineral maps generated from analysis of combined visible-near infrared (VNIR) and shortwave-infrared (SWIR) data and thermal infrared (TIR) ASTER data to a previously published regional geologic map. Such comparisons are used to identify and differentiate rock-forming and hydrothermal alteration-related minerals, which aids in lithologic mapping and alteration characterization over an 11,245 square kilometer area.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Mapping argillic and advanced argillic alteration in volcanic rocks, quartzites, and quartz arenites in the western Richfield 1° x 2 ° quadrangle, southwestern Utah, using ASTER satellite data
Series title Open-File Report
Series number 2012-1105
DOI 10.3133/ofr20121105
Year Published 2012
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Central Mineral and Environmental Resources Science Center
Description Report: iii, 5 p.; Poster (Low Resolution): 90.10 inches x 44.10 inches; Poster (High Resolution): 90.10 inches x 44.10 inches; Downloads Directory
Country United States
State Utah
Datum Datum: North American Datum 1927
Projection Universal Transverse Mercator Projection, Zone 12 North
Scale 175000
Online Only (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details