Numerical Model Simulations of Potential Changes in Water Levels and Capture of Natural Discharge From Groundwater Withdrawals in Snake Valley and Adjacent Areas, Utah and Nevada

Open-File Report 2019-1083
Prepared in cooperation with the National Park Service and the Bureau of Land Management
By:

Links

  • Document: Report (4 MB pdf)
  • Data Release: Data Release - MODFLOW-2005 files for numerical model simulations of potential changes in water levels and capture of natural discharge from groundwater withdrawals in Snake Valley and adjacent areas, Utah and Nevada
  • Download citation as: RIS | Dublin Core

Abstract

The National Park Service (NPS) and the Bureau of Land Management (BLM) are concerned about cumulative effects of groundwater development on groundwater-dependent resources managed by, and other groundwater resources of interest to, these agencies in Snake Valley and adjacent areas, Utah and Nevada. Of particular concern to the NPS and BLM are withdrawals from all existing approved, perfected, certified, permitted, and vested groundwater rights in Snake Valley totaling about 55,272 acre-feet per year (acre-ft/yr), and from several senior water-right applications filed by the Southern Nevada Water Authority (SNWA) totaling 50,680 acre-ft/yr.

An existing groundwater-flow model of the eastern Great Basin was used to investigate where potential drawdown and capture of natural discharge is likely to result from potential groundwater withdrawals from existing groundwater rights in Snake Valley, and from groundwater withdrawals proposed in several applications filed by the SNWA. To evaluate the potential effects of the existing and proposed SNWA groundwater withdrawals, 11 withdrawal scenarios were simulated. All scenarios were run as steady state to estimate the ultimate long-term effects of the simulated withdrawals. This assessment provides a general understanding of the relative susceptibility of the groundwater resources of interest to the NPS and BLM, and the groundwater system in general, to existing and future groundwater development in the study area.

At the NPS and BLM groundwater resource sites of interest, simulated drawdown resulting from withdrawals based on existing approved, perfected, certified, permitted, and vested groundwater rights within Snake Valley ranged between 0 and 159 feet (ft) without accounting for irrigation return flow, and between 0 and 123 ft with accounting for irrigation return flow. With the addition of proposed SNWA withdrawals of 35,000 acre-ft/yr (equal to the Unallocated Groundwater portion allotted to Nevada in a draft interstate agreement), simulated drawdowns at the NPS and BLM sites of interest increased to range between 0 and 2,074 ft without irrigation return flow, and between 0 and 2,002 ft with irrigation return flow. With the addition of the proposed SNWA withdrawals of an amount equal to the full application amounts (50,680 acre-ft/yr), simulated drawdowns at the NPS and BLM sites of interest increased to range between 1 and 3,119 ft without irrigation return flow, and between 1 and 3,044 ft with irrigation return flow.

At the NPS and BLM groundwater resource sites of interest, simulated capture of natural discharge resulting from withdrawals based on existing groundwater rights in Snake Valley, both with and without irrigation return flow, ranged between 0 and 100 percent; simulated capture of 100 percent occurred at four sites. With the addition of proposed SNWA withdrawals of an amount equal to the Unallocated Groundwater portion allotted to Nevada in the draft interstate agreement, simulated capture of 100 percent occurred at nine additional sites without irrigation return flow, and at eight additional sites with irrigation return flow. With the addition of the proposed SNWA withdrawals of an amount equal to the full application amounts, simulated capture of 100 percent occurred at 11 additional sites without irrigation return flow, and at 9 additional sites with irrigation return flow.

The large simulated drawdowns produced in the scenarios that include large portions or all of the proposed SNWA withdrawals indicate that the groundwater system may not be able to support the amount of withdrawals from the proposed points of diversion (PODs) in the current SNWA water-right applications. Therefore, four additional scenarios were simulated where the withdrawal rates at the SNWA PODs were constrained by not allowing drawdowns to be deeper than the assumed depth of the PODs (about 2,000 ft). In the constrained scenarios, total withdrawals at the SNWA PODs were reduced to about 48 percent of the Unallocated Groundwater portion allotted to Nevada (35,000 acre-ft/yr reduced to 16,817 acre-ft/yr or 16,914 acre-ft/yr, without or with irrigation return flow, respectively), and about 44 percent of the full application amounts (50,680 acre-ft/yr reduced to 22,048 acre-ft/yr or 22,165 acre-ft/yr, without or with irrigation return flow, respectively). This indicates that the SNWA may need to add more PODs, or PODs in different locations, in order to withdraw large portions or all of the groundwater that has been applied for.

At the NPS and BLM groundwater resource sites of interest, simulated drawdown resulting from the addition of the constrained SNWA withdrawals applied to the Unallocated Groundwater amount ranged between 0 and 290 ft without irrigation return flow, and between 0 and 252 ft with irrigation return flow. With the addition of the constrained SNWA withdrawals applied to the full application amounts, simulated drawdowns at the NPS and BLM sites of interest ranged between 0 and 358 ft without irrigation return flow, and between 0 and 313 ft with irrigation return flow.

At the NPS and BLM groundwater resource sites of interest, with the addition of the constrained SNWA withdrawals applied to the Unallocated Groundwater amount, simulated capture of 100 percent of the natural discharge occurred at five additional sites without irrigation return flow, and at two additional sites with irrigation return flow (in addition to the four captured from existing water rights both with and without irrigation return flow). With the addition of the constrained SNWA withdrawals applied to the full application amounts, simulated capture of 100 percent occurred at six additional sites both with and without irrigation return flow.

Suggested Citation

Masbruch, M.D., 2019, Numerical model simulations of potential changes in water levels and capture of natural discharge from groundwater withdrawals in Snake Valley and adjacent areas, Utah and Nevada: U.S. Geological Survey Open-File Report 2019–1083, 49 p., https://doi.org/10.3133/ofr20191083.

ISSN: 2331-1258 (online)

Study Area

Table of Contents

  • Abstract
  • Introduction
  • Potential Effects of Groundwater Withdrawals
  • Model Limitations
  • Appropriate Uses of the Model
  • Summary
  • References Cited
Publication type Report
Publication Subtype USGS Numbered Series
Title Numerical model simulations of potential changes in water levels and capture of natural discharge from groundwater withdrawals in Snake Valley and adjacent areas, Utah and Nevada
Series title Open-File Report
Series number 2019-1083
DOI 10.3133/ofr20191083
Year Published 2019
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Utah Water Science Center
Description Report: vi, 49 p.; Data Release
Country United States
State Nevada, Utah
Online Only (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details