A review of hydrologic and geologic conditions related to the radioactive solid-waste burial grounds at Oak Ridge National Laboratory, Tennessee

Open-File Report 76-727
By:

Links

Abstract

Solid waste contaminated by radioactive matter has been buried in the vicinity of Oak Ridge National Laboratory since 1944. By 1973, an estimated six million cubic feet of such material had been placed in six burial grounds in two valleys. The practice initially was thought of as a safe method for permanently removing these potentially hazardous substances from man's surroundings, but is now que.3tionable at this site because of known leaching of contaminants from the waste, transport in ground water, and release to the terrestrial and fluvial environments. This review attempts to bring together in a single document information from numerous published and unpublished sources regarding the past criteria used for selecting the Oak Ridge burial-ground sites, the historical development and conditions of these facilities as of 1974, the geologic framework of the Laboratory area and the movement of water and water-borne contaminants in that area, the effects of sorption and ion exchange upon radionuclide transport, and a description and evaluation of the existing monitoring system. It is intended to assist Atomic Energy Commission (now Energy Research and Development Administration) officials in the formulation of managerial decisions concerning the burial grounds and present monitoring methods. Sites for the first three burial grounds appear to have been chosen during and shortly after World War II on the basis of such factors as safety, security, and distance from sources of waste origin. By 1950, geologic criteria had been introduced, and in the latter part of that decade, geohydrologic criteria were considered. While no current criteria have been defined, it becomes evident from the historical record that the successful containment of radionuclides below land surface for long periods of time is dependent upon a complex interrelationship between many geologic, hydrologic, and geochemical controls, and any definition of criteria must include consideration of these factors. For the most part, the burial grounds have been developed by a simple cut and fill procedure similar to the operation of a municipal landfill. Low permeability of the residuum, high rainfall, shallow depth to ground water, the excavation of trenches below the water table, and other practices, have contributed to a condition of waste leaching in probably all of the burial grounds. Despite these conditions, only very small concentrations of radionuclides have been found in wells or otherwise attributed to the initial three, small sites in Bethel Valley. This fact, however, may be due in part to the scant extent of site monitoring of those burial grounds for transport of radionuclides in ground water, and to the discharge of liquid radioactive waste to the drainage in concentrations that probably would have masked the presence of contaminants derived from these burial grounds. In comparison to the Bethel Valley sites, larger amounts of radioactive contaminants have been found in wells, seeps, trench overflow, and the drainages that drain Burial Grounds 4 and 5 in Melton Valley. The movement of radionuclides from the trenches to the drainages show that the latter sites are not suitable for the retention of all contaminants under existing conditions, and invalidates the operational concept of long-term or permanent retention of all radionuclides in the geologic environment. The transport of many radioactive ions leached from the waste has been retarded by the very high sorptive and ion exchange capacity of the residuum with which the radionuclides have had contact. Not all radionuclides, though, will be retained in the subsurface by adsorption, absorption, or ion exchange. Among those radioactive contaminants that may be problematical with respect to trench burial at Oak Ridge are tritium and other negatively-charged nuclides, positively-charged radionuclides included in some of the complexed molecules, radioactive ions that have chemical properties si
Publication type Report
Publication Subtype USGS Numbered Series
Title A review of hydrologic and geologic conditions related to the radioactive solid-waste burial grounds at Oak Ridge National Laboratory, Tennessee
Series title Open-File Report
Series number 76-727
DOI 10.3133/ofr76727
Edition -
Year Published 1976
Language ENGLISH
Publisher U.S. Geological Survey,
Description v, 85 p. :ill., maps ;28 cm.; (147 p., 3 sheets, scale 1:24,000 - PGS)
Scale 24000
Google Analytic Metrics Metrics page
Additional publication details