thumbnail

Field, model, and computer simulation study of some aspects of the origin and distribution of Colorado Plateau-type uranium deposits

Open-File Report 82-589

By:
, , ,

Links

Abstract

Numerous hypotheses have been proposed to account for the nature and distribution of tabular uranium and vanadium-uranium deposits of the Colorado Plateau. In one of these hypotheses it is suggested that the deposits resulted from geochemical reactions at the interface between a relatively stagnant groundwater solution and a dynamic, ore-carrying groundwater solution which permeated the host sandstones (Shawe, 1956; Granger, et al., 1961; Granger, 1968, 1976; and Granger and Warren, 1979). The study described here was designed to investigate some aspects of this hypothesis, particularly the nature of fluid flow in sands and sandstones, the nature and distribution of deposits, and the relations between the deposits and the host sandstones. The investigation, which was divided into three phases, involved physical model, field, and computer simulation studies. During the initial phase of the investigation, physical model studies were conducted in porous-media flumes. These studies verified the fact that humic acid precipitates could form at the interface between a humic acid solution and a potassium aluminum sulfate solution and that the nature and distribution of these precipitates were related to flow phenomena and to the nature and distribution of the host porous-media. During the second phase of the investigation field studies of permeability and porosity patterns in Holocene stream deposits were investigated and the data obtained were used to design more realistic porous media models. These model studies, which simulated actual stream deposits, demonstrated that precipitates possess many characteristics, in terms of their nature and relation to host sandstones, that are similar to ore deposits of the Colorado Plateau. The final phase of the investigation involved field studies of actual deposits, additional model studies in a large indoor flume, and computer simulation studies. The field investigations provided an up-to-date interpretation of the depositional environments of the host sandstones in the Slick Rock District and data on the nature and distribution of the ore deposits which are found to be directly related to the architecture of the host sandstones which acted as conduits for the transport of mineralized groundwaters. Large-scale model studies, designed to simulate Grants Mineral Belt deposits, demonstrated that precipitates had characteristics similar to those of actual uranium deposits and data obtained from these studies strongly supported the hypothesis that the ores formed soon after deposition of the host sandstones and that their distribution was largely controlled by permeability and porosity patterns established at the time of deposition of the host sandstones. A numerical model was developed during the second and third stages of the investigation that can predict favorable locations for mineralization given sufficient data on porosity, hydraulic conductivity, the distribution and thickness of sandstone hosts, and an estimate of the initial hydrologic conditions. The model was successfully tested using data from the Slick Rock District.

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Field, model, and computer simulation study of some aspects of the origin and distribution of Colorado Plateau-type uranium deposits
Series title:
Open-File Report
Series number:
82-589
Edition:
-
Year Published:
1982
Language:
ENGLISH
Publisher:
U.S. Geological Survey,
Description:
56 p., ill., maps ;28 cm.