Hydrology of area 53, northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah

Open-File Report 83-765
By: , and 

Links

Abstract

Hydrologic information and analysis are needed to aid in decisions to lease Federally owned coal and for the preparation of the necessary Environmental Assessments and Impact Study Reports. This need has become even more critical with the enactment of the Surface Mining Control and Reclamation Act of 1977 (Public Law 95-87). This report, one in a series of nationwide coal province reports, presents information thematically by describing single hydrologic topics through the use of brief texts and accompanying maps, graphs, or other illustrations. The report broadly characterizes the hydrology of Area 53 in northwestern Colorado, south-central Wyoming, and northeastern Utah. The report area, located primarily in the Wyoming Basin and Colorado Plateau physiographic provinces, consists of 14,650 square miles of diverse geology, topography, and climate. This diversity results in contrasting hydrologic characteristics. The two major rivers, the Yampa and the White Rivers, originate in humid granitic and basaltic mountains, then flow over sedimentary rocks underlying semiarid basins to their respective confluences with the Green River. Altitudes range from 4,800 to greater than 12,000 feet above sea level. Annual precipitation in the mountains, as much as 60 inches, is generally in the form of snow. Snowmelt produces most streamflow. Precipitation in the lower altitude sedimentary basins, ranging from 8 to 16 inches, is generally insufficient to sustain streamflow; therefore, most streams originating in the basins (where most of the streams in coal-mining areas originate) are ephemeral. Streamflow quality is best in the mountains where dissolved-solids concentrations generally are small. As streams flow across the sedimentary basins, mineral dissolution from the sedimentary rocks and irrigation water with high mineral content increase the dissolved-solids concentrations in a downstream direction. Due to the semiarid climate of the basins, soils are not adequately leached; consequently, flows in the ephemeral streams usually have larger concentrations of dissolved solids than those in perennial streams. Ground-water supplies are restricted by the low yields of wells due to small permeability. Most ground-water use is for domestic and stock-watering purposes; it is limited by the amount and type of dissolved material. The ground-water ionic composition is highly variable. Dissolved-solids concentrations for aquifers sampled in Area 53 range from a minimum of 46 milligrams per liter to a maximum of 109,000 milligrams per liter. Trace element concentrations generally are not a problem. An estimated 82 billion tons of coal exist above a depth of 6,000 feet in the Colorado parts of the area. The coal beds of greatest economic interest occur in the sedimentary deposits of the Upper Cretaceous Iles and Williams Fork Formations of the Mesaverde Group and the Upper Cretaceous Lance Formation and the Fort Union and Wasatch Formations of Tertiary age. The coal characteristically has a low sulfur content. Hydrologic problems related to surface mining are erosion, sedimentation, decline in water levels, disruption of aquifers, and degradation of water quality. Because the semiarid mine areas have very little runoff and the major streams have large buffer and dilution capacities, the effects of mining on surface water are minimal. However, effects on ground water may be much more severe and long lasting.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Hydrology of area 53, northern Great Plains and Rocky Mountain coal provinces, Colorado, Wyoming, and Utah
Series title Open-File Report
Series number 83-765
DOI 10.3133/ofr83765
Year Published 1984
Language English
Publisher U.S. Geological Survey
Contributing office(s) U.S. Geological Survey
Description vi, 93 p.
Country United States
State Colorado, Wyoming and Utah
Other Geospatial Area 53
Google Analytic Metrics Metrics page
Additional publication details