Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon

Open-File Report 86-247




Three geochemical methods were used to determine chemical reactions that control solute concentrations in the Snake River Plain regional aquifer system: (1) calculation of a regional solute balance within the aquifer and of mineralogy in the aquifer framework to identify solute reactions, (2) comparison of thermodynamic mineral saturation indices with plausible solute reactions, and (3) comparison of stable isotope ratios of the groundwater with those in the aquifer framework. The geothermal groundwater system underlying the main aquifer system was examined by calculating thermodynamic mineral saturation indices, stable isotope ratios of geothermal water, geothermometry, and radiocarbon dating. Water budgets, hydrologic arguments, and isotopic analyses for the eastern Snake River Plain aquifer system demonstrate that most, if not all, water is of local meteoric and not juvenile or formation origin. Solute balance, isotopic, mineralogic, and thermodynamic arguments suggest that about 20% of the solutes are derived from reactions with rocks forming the aquifer framework. Solute reactions indicate that calcite and silica are precipitated in the aquifer. Large amounts of sodium and chloride, relative to their concentration in the igneous rock, are being removed from the aquifer. Release of fluids from inclusions in the igneous rocks, and initial flushing of grain boundaries and pores of detrital marine sediments in interbeds are believed to be the source of the sodium chloride. Identification and quantification of reactions controlling solute concentrations in groundwater in the eastern plain indicate that the aquifer is not a large mixing vessel that simply stores and transmits water and solutes but is undergoing diagenesis and is both a source and sink for solutes. Reactions controlling solutes in the western Snake River basin are believed to be similar to those in the eastern basin but the regional geothermal system that underlies the Snake River Plain contains total dissolved solids similar to those in the overlying Snake River Plain aquifer system but contains higher concentrations of sodium, bicarbonate, silica, fluoride, sulfate, chloride, arsenic, boron, and lithium, and lower concentrations of calcium, magnesium, and hydrogen. (Lantz-PTT)

Additional Publication Details

Publication type:
Publication Subtype:
USGS Numbered Series
Solute geochemistry of the Snake River plain regional aquifer system, Idaho and eastern Oregon
Series title:
Open-File Report
Series number:
Year Published:
U.S. Geological Survey,
xi, 146 p. :ill., maps ;28 cm.