Remote sensing and airborne geophysics in the assessment of natural aggregate resources

Open-File Report 94-158

, , and



Natural aggregate made from crushed stone and deposits of sand and gravel is a vital element of the construction industry in the United States. Although natural aggregate is a high volume/low value commodity that is relatively abundant, new sources of aggregate are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transporation costs, and environmental concerns, especially in urban growth centers where much of the aggregate is used. As the demand for natural aggregate increases in response to urban growth and the repair and expansion of the national infrastructure, new sources of natural aggregate will be required. The USGS has recognized the necessity of developing the capability to assess the potential for natural aggregate sources on Federal lands; at present, no methodology exists for systematically describing and evaluating potential sources of natural aggregate. Because remote sensing and airborne geophysics can detect surface and nearsurface phenomena, these tools may useful for detecting and mapping potential sources of natural aggregate; however, before a methodology for applying these tools can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits, as well as the problems that will be encountered in assessing their potential value. There are two primary sources of natural aggregate: (1) exposed or near-surface igneous, metamorphic, and sedimentary bedrock that can be crushed, and (2) deposits of sand and gravel that may be used directly or crushed and sized to meet specifications. In any particular area, the availability of bedrock suitable for crushing is a function of the geologic history of the area - the processes that formed, deformed, eroded and exposed the bedrock. Deposits of sand and gravel are primarily surficial deposits formed by the erosion, transportation by water and ice, and deposition of bedrock fragments. Consequently, most sand and gravel deposits are Tertiary or Quaternary in age and are most common in glaciated areas, alluvial basins, and along rivers and streams. The distribution of potential sources of natural aggregate in the United States is closely tied to physiography and the type of bedrock that occurs in an area. Using these criteria, the United States can be divided into 12 regions: western mountain ranges, alluvial basins, Columbia Plateau, Colorado Plateau and Wyoming basin, High Plains, nonglaciated central region, glaciated central region, Piedmont Blue Ridge region, glaciated northeastern and Superior uplands, Atlantic and Gulf coastal plain, Hawaiian Islands, and Alaska. Each region has similar types of natural aggregate sources within its boundary, although there may be wide variations in specific physical and chemical characteristics of the aggregates within a region. Conventional exploration for natural aggregate deposits has been largely a ground-based operation (field mapping, sampling, trenching and augering, resistivity), although aerial photos and topographic maps have been extensively used to target possible deposits for sampling and testing. Today, the exploration process also considers other factors such as the availability of the land, space and water supply for processing purposes, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which aggregate material is judged to be acceptable or unacceptable for specific applications; most of these properties and characteristics pertain only to individual aggregate particles and not to the bulk deposit. For example, properties of crushed stone aggregate particles such as thermal volume change, solubility, oxidation and hydration reactivity, and particle strength, among many others, are important consi

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Remote sensing and airborne geophysics in the assessment of natural aggregate resources
Series title:
Open-File Report
Series number:
Year Published:
U.S. Geological Survey,
62 p. :ill. ;28 cm.