Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida

Open-File Report 98-68




The Naval Air Station, Jacksonville (herein referred to as the Station), occupies 3,800 acres adjacent to the St. Johns River in Duval County, Florida. Operable Unit 3 (OU3) occupies 134 acres on the eastern side of the Station and has been used for industrial and commercial purposes since World War II. Ground water contaminated by chlorinated organic compounds has been detected in the surficial aquifer at OU3. The U.S. Navy and U.S. Geological Survey (USGS) conducted a cooperative hydrologic study to evaluate the potential for ground water discharge to the neighboring St. Johns River. A ground-water flow model, previously developed for the area, was recalibrated for use in this study. At the Station, the surficial aquifer is exposed at land surface and forms the uppermost permeable unit. The aquifer ranges in thickness from 30 to 100 feet and consists of unconsolidated silty sands interbedded with local beds of clay. The low-permeability clays of the Hawthorn Group form the base of the aquifer. The USGS previously conducted a ground-water investigation at the Station that included the development and calibration of a 1-layer regional ground-water flow model. For this investigation, the regional model was recalibrated using additional data collected after the original calibration. The recalibrated model was then used to establish the boundaries for a smaller subregional model roughly centered on OU3. Within the subregional model, the surficial aquifer is composed of distinct upper and intermediate layers. The upper layer extends from land surface to a depth of approximately 15 feet below sea level; the intermediate layer extends from the upper layer down to the top of the Hawthorn Group. In the northern and central parts of OU3, the upper and intermediate layers are separated by a low-permeability clay layer. Horizontal hydraulic conductivities in the upper layer, determined from aquifer tests, range from 0.19 to 3.8 feet per day. The horizontal hydraulic conductivity in the intermediate layer, determined from one aquifer test, is 20 feet per day. An extensive stormwater drainage system is present at OU3 and the surrounding area. Some of the stormwater drains have been documented to be draining ground water from the upper layer of the surficial aquifer, whereas other drains are only suspected to be draining ground water. The subregional model contained 78 rows and 148 columns of square model cells that were 100 feet on each side. Vertically, the surficial aquifer was divided into two layers; layer 1 represented the upper layer and layer 2 represented the intermediate layer. Steady-state ground-water flow conditions were assumed. The model was calibrated to head data collected on October 29 and 30, 1996. After calibration, the model matched all 67 measured heads to within the calibration criterion of 1 foot; and 48 of 67 simulated heads (72 percent) were within 0.5 foot. Model simulated recharge rates ranged from 0.4 inch per year in areas that were largely paved to 13.0 inches per year in irrigated areas. Simulated hydraulic conductivities in the upper layer at OU3 ranged from 0.5 foot per day in the north to 1.0 foot per day in the south. Simulated vertical leakance between the upper and intermediate layers ranged from 1.0x10-6 per day in an area with low-permeability clays to 4.3x10-2 per day in an area that had been dredged. Simulated transmissivities in the intermediate layer ranged from 25 feet squared per day in an area of low-permeability channel-fill deposits to a high of 1,200 feet squared per day in areas covering most of OU3. Simulated riverbed conductances ranged from 4 to 60 feet squared per day and simulated bottom conductances of leaking stormwater drains ranged from 5 to 20 feet squared per day. The direction and velocity of ground-water flow was determined using particle-tracking techniques. Ground-water flow in the upper layer was generally eastward toward the St. Johns River. However, leaking stormwat

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Ground-water hydrology and simulation of ground-water flow at Operable Unit 3 and surrounding region, U.S. Naval Air Station, Jacksonville, Florida
Series title:
Open-File Report
Series number:
Year Published:
U.S. Geological Survey ; Branch of Information Services [distributor],
vi, 36 p. :ill., maps ;28 cm.