Lunar remote sensing and measurements

Professional Paper 1046-B

, , ,



Remote sensing and measurements of the Moon from Apollo orbiting spacecraft and Earth form a basis for extrapolation of Apollo surface data to regions of the Moon where manned and unmanned spacecraft have not been and may be used to discover target regions for future lunar exploration which will produce the highest scientific yields. Orbital remote sensing and measurements discussed include (1) relative ages and inferred absolute ages, (2) gravity, (3) magnetism, (4) chemical composition, and (5) reflection of radar waves (bistatic). Earth-based remote sensing and measurements discussed include (1) reflection of sunlight, (2) reflection and scattering of radar waves, and (3) infrared eclipse temperatures. Photographs from the Apollo missions, Lunar Orbiters, and other sources provide a fundamental source of data on the geology and topography of the Moon and a basis for comparing, correlating, and testing the remote sensing and measurements. Relative ages obtained from crater statistics and then empirically correlated with absolute ages indicate that significant lunar volcanism continued to 2.5 b.y. (billion years) ago-some 600 m.y. (million years) after the youngest volcanic rocks sampled by Apollo-and that intensive bombardment of the Moon occurred in the interval of 3.84 to 3.9 b.y. ago. Estimated fluxes of crater-producing objects during the last 50 m.y. agree fairly well with fluxes measured by the Apollo passive seismic stations. Gravity measurements obtained by observing orbiting spacecraft reveal that mare basins have mass concentrations and that the volume of material ejected from the Orientale basin is near 2 to 5 million km 3 depending on whether there has or has not been isostatic compensation, little or none of which has occurred since 3.84 b.y. ago. Isostatic compensation may have occurred in some of the old large lunar basins, but more data are needed to prove it. Steady fields of remanent magnetism were detected by the Apollo 15 and 16 subsatellites, and the lunar dipole field was revised to no more than 6x 10 19 gauss. High-resolution mapping of fields of weak remanent magnetism (to 0.1 gamma) was made possible by the Apollo plasma and energetic-particle experiment. Although the causes of remanent magnetism are poorly understood, correlations with geologic units suggest the results may ultimately have farreaching significance to lunar history. Maria are much less structured by strong surface magnetic anomalies than the highlands. The strongest anomalies are associated with ejecta of farside basins, plains materials filling pre-Imbrian craters, and other old Imbrian to pre-Imbrian units. The high remanent fields could be due to cooling of ejecta units in an ancient magnetic field, lunar regolith maturity, extensive reworking and disruption of a magnetized layer, or simply surface roughness. Orbital geochemical experiments have shown that lunar high lands have larger Al: Si ratios and smaller Mg: Si ratios than maria. These two ratios are inversely related on a regional basis. With the exception of fresh craters, albedo and Al : Si ratios vary directly, showing that compositional differences as well as exposure of fresh materials are responsible for high albedos. Statistically treated data show that geologic contacts and compositional boundaries are concentric and can be roughly matched. Some craters on mare material have penetrated the mare fill, bringing highland-type materials to the surface. Natural radioactivity from thorium, potassium, and uranium is inversely correlated with elevation. Mare regions are enriched in iron, titanium, and magnesium relative to the highlands. Orbital bistatic-radar results provide estimates of surface roughness at two scale lengths (about 30 m and 250 m), which agree with visual estimates of roughness. The dielectric constant of the lunar surface, where sampled, is uniform to 13-cm radar and near 3. Slope frequency distributions measured by the radar vary and

Additional Publication Details

Publication type:
Publication Subtype:
USGS Numbered Series
Lunar remote sensing and measurements
Series title:
Professional Paper
Series number:
Year Published:
U.S. Govt. Print. Off.,
p. B1-B78