Geohydrology of the Island of Oahu, Hawaii

Professional Paper 1412-B
By:

Links

Abstract

The island of Oahu, Hawaii, is the eroded remnant of two coalesced shield volcanoes, the Waianae Volcano and the Koolau Volcano. Shield-building lavas emanated mainly from the rift zones of the volcanoes. Subaerial eruptions of the Waianae Volcano occurred between 3.9 and 2.5 million years ago, and eruptions of the Koolau Volcano occurred between 2.6 and 1.8 million years ago. The volcanoes have subsided more then 6,000 feet, and erosion has destroyed all but the western rim of the Koolau Volcano and the eastern part of the Waianae Volcano, represented by the Koolau and Waianae Ranges, respectively. Hydraulic properties of the volcanic-rock aquifers are determined by the distinctive textures and geometry of individual lava flows. Individual lava flows are characterized by intergranular, fracture, and conduit-type porosity and commonly are highly permeable. The stratified nature of the lava flows imparts a layered heterogeneity. The flows are anisotropic in three dimensions, with the largest permeability in the longitudinal direction of the lava flow, an intermediate permeability in the direction transverse to the flow, and the smallest permeability normal to bedding. Averaged over several lava-flow thicknesses, lateral hydraulic conductivity of dike-free lava flows is about 500 to 5,000 feet per day, with smaller and larger values not uncommon. Systematic areal variations in lava-flow thickness or other properties may impart trends in the heterogeneity. The aquifers of Oahu contain two flow regimes: shallow freshwater and deep saltwater. The freshwater floats on underlying saltwater in a condition of buoyant displacement, although the relation is not necessarily a simple hydrostatic balance everywhere. Natural driving mechanisms for freshwater and saltwater flow differ. Freshwater moves mainly by simple gravity flow; meteoric water flows from inland recharge areas at higher altitudes to discharge areas at lower altitudes near the coast. Remnant volcanic heat also may drive geothermal convection of freshwater in the rift zones. Saltwater flow is driven by changes in freshwater volume and sea level and by dispersive and geothermal convection. Freshwater flow is much more active--velocity is higher and residence time is shorter--than saltwater flow. Hydrodynamic dispersion produces a transition zone of mixed water between the freshwater and the underlying saltwater. The Waianae aquifer in the Waianae Volcanics and the Koolau aquifer in the Koolau Basalt are the two principal volcanic-rock aquifers on Oahu. The sequences of coastal-plain and valley-fill deposits locally form aquifers, but these aquifers are of minor importance because of the small volume of water contained in them. The two principal volcanic-rock aquifers are composed mainly of thick sequences of permeable, thin-bedded lava flows. These aquifers combine to form a layered aquifer system throughout central Oahu where the Koolau aquifer overlies the Waianae aquifer. They are separated by a regional confining unit formed by weathering along the Waianae-Koolau unconformity, which marks the eroded and weathered surface of the Waianae Volcano buried by younger Koolau lava flows. The areal hydraulic continuity of the aquifers of Oahu is interrupted in many places by steeply dipping, stratigraphically unconformable, geohydrologic barriers. These low-permeability features include eruptive feeder dikes, sedimentary valley fills, and former erosional surfaces now buried by younger lava flows or sediments. The barriers impede and divert lateral ground-water flow and impound ground water to greater heights than would occur in the absence of the barriers, causing abrupt stepped discontinuities in the potentiometric surface. The largest discontinuities are associated with dense concentrations of dikes in the eruptive rift zones of each volcano. The dikes in these zones originate from great depths and impede flow both in shallow-freshwater and in deep-saltwater flow sy

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Geohydrology of the Island of Oahu, Hawaii
Series title Professional Paper
Series number 1412
Chapter B
DOI 10.3133/pp1412B
Edition -
Year Published 1996
Language ENGLISH
Publisher U.S. Geological Survey
Contributing office(s) Pacific Islands Water Science Center
Description vi, 55 p.
Larger Work Type Report
Larger Work Subtype USGS Numbered Series
Larger Work Title REGIONAL AQUIFER-SYSTEM ANALYSIS-OAHU, HAWAII
Google Analytic Metrics Metrics page
Additional publication details