thumbnail

Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model

Professional Paper 1711

Prepared in cooperation with U.S. Department of EnergyOffice of Environmental Management, National Nuclear Security Administration, Nevada Site Office, under Interagency Agreement DE?AI52?01NV13944,Office of Civilian Radioactive Waste Management, under Interagency Agreement DE?AI28?02RW12167, andDepartment of the Interior, National Park Service
By:
and

Links

Abstract

A numerical three-dimensional (3D) transient groundwater flow model of the Death Valley region was developed by the U.S. Geological Survey for the U.S. Department of Energy programs at the Nevada Test Site and at Yucca Mountain, Nevada. Decades of study of aspects of the groundwater flow system and previous less extensive groundwater flow models were incorporated and reevaluated together with new data to provide greater detail for the complex, digital model. A 3D digital hydrogeologic framework model (HFM) was developed from digital elevation models, geologic maps, borehole information, geologic and hydrogeologic cross sections, and other 3D models to represent the geometry of the hydrogeologic units (HGUs). Structural features, such as faults and fractures, that affect groundwater flow also were added. The HFM represents Precambrian and Paleozoic crystalline and sedimentary rocks, Mesozoic sedimentary rocks, Mesozoic to Cenozoic intrusive rocks, Cenozoic volcanic tuffs and lavas, and late Cenozoic sedimentary deposits of the Death Valley regional groundwater flow system (DVRFS) region in 27 HGUs. Information from a series of investigations was compiled to conceptualize and quantify hydrologic components of the groundwater flow system within the DVRFS model domain and to provide hydraulic-property and head-observation data used in the calibration of the transient-flow model. These studies reevaluated natural groundwater discharge occurring through evapotranspiration (ET) and spring flow; the history of groundwater pumping from 1913 through 1998; groundwater recharge simulated as net infiltration; model boundary inflows and outflows based on regional hydraulic gradients and water budgets of surrounding areas; hydraulic conductivity and its relation to depth; and water levels appropriate for regional simulation of prepumped and pumped conditions within the DVRFS model domain. Simulation results appropriate for the regional extent and scale of the model were provided by acquiring additional data, by reevaluating existing data using current technology and concepts, and by refining earlier interpretations to reflect the current understanding of the regional groundwater flow system. Groundwater flow in the Death Valley region is composed of several interconnected, complex groundwater flow systems. Groundwater flow occurs in three subregions in relatively shallow and localized flow paths that are superimposed on deeper, regional flow paths. Regional groundwater flow is predominantly through a thick Paleozoic carbonate rock sequence affected by complex geologic structures from regional faulting and fracturing that can enhance or impede flow. Spring flow and ET are the dominant natural groundwater discharge processes. Groundwater also is withdrawn for agricultural, commercial, and domestic uses. Groundwater flow in the DVRFS was simulated using MODFLOW-2000, the U.S. Geological Survey 3D finitedifference modular groundwater flow modeling code that incorporates a nonlinear least-squares regression technique to estimate aquifer parameters. The DVRFS model has 16 layers of defined thickness, a finite-difference grid consisting of 194 rows and 160 columns, and uniform cells 1,500 meters (m) on each side. Prepumping conditions (before 1913) were used as the initial conditions for the transient-state calibration. The model uses annual stress periods with discrete recharge and discharge components. Recharge occurs mostly from infiltration of precipitation and runoff on high mountain ranges and from a small amount of underflow from adjacent basins. Discharge occurs primarily through ET and spring discharge (both simulated as drains) and water withdrawal by pumping and, to a lesser amount, by underflow to adjacent basins simulated by constant-head boundaries. All parameter values estimated by the regression are reasonable and within the range of expected values. The simulated hydraulic heads of the final calibrated transient mode

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Death Valley regional groundwater flow system, Nevada and California-Hydrogeologic framework and transient groundwater flow model
Series title:
Professional Paper
Series number:
1711
Edition:
-
Year Published:
2010
Language:
ENGLISH
Publisher:
U.S. Geological Survey
Contributing office(s):
Nevada Water Science Center
Description:
viii, 398 p.; Appendices; Plates; Geospatial data sets
Projection:
Universal Transverse Mercator
Online Only (Y/N):
N
Additional Online Files(Y/N):
Y