thumbnail

Simulation of hydraulic characteristics in the white sturgeon spawning habitat of the Kootenai River near Bonners Ferry, Idaho

Scientific Investigations Report 2005-5110

Prepared in cooperation with the Idaho Department of Fish and Game
By:

Links

Abstract

Hydraulic characterization of the Kootenai River, especially in the white sturgeon spawning habitat reach, is needed by the Kootenai River White Sturgeon Recovery Team to promote hydraulic conditions that improve spawning conditions for the white sturgeon (Acipenser transmontanus) in the Kootenai River. The decreasing population and spawning failure of white sturgeon has led to much concern. Few wild juvenile sturgeons are found in the river today. Determining the location of the transition between backwater and free-flowing water in the Kootenai River is a primary focus for biologists who believe that hydraulic changes at the transition affect the location where the sturgeon choose to spawn. The Kootenai River begins in British Columbia, Canada, and flows through Montana, Idaho, and back into British Columbia. The 65.6-mile reach of the Kootenai River in Idaho was studied. The study area encompasses the white sturgeon spawning reach that has been designated as a critical habitat.


A one-dimensional hydraulic-flow model of the study reach was developed, calibrated, and used to develop relations between hydraulic characteristics and water-surface elevation, discharge, velocity, and backwater extent. The model used 164 cross sections, most of which came from a previous river survey conducted in 2002-03. The model was calibrated to water-surface elevations at specific discharges at five gaging stations. Calibrated water-surface elevations ranged from about 1,743 to about 1,759 feet, and discharges used in calibration ranged from 5,000 to 47,500 cubic feet per second. Model calibration was considered acceptable when the difference between measured and simulated water-surface elevations was ?0.15 foot or less. Measured and simulated average velocities also were compared. These comparisons indicated agreement between measured and simulated values.


The location of the transition between backwater and free-flowing water was determined using the calibrated model. The model was used to simulate hydraulic characteristics for a range of water-surface elevations from 1,741 to 1,762 feet and discharges from 4,000 to 75,000 cubic feet per second. These simulated hydraulic characteristics were used to develop a three-parameter relation-discharge in the study reach, water-surface elevation at Kootenai River at Porthill gaging station (12322000), and the location of the transition between backwater and free-flowing water. Simulated hydraulic characteristics produced backwater locations ranging from river mile (RM) 105.6 (Porthill) to RM 158 (near Crossport), a span of about 52 miles. However, backwater locations from measured data ranged primarily from RM 152 to RM 157, a 5-mile span. The average backwater location from measured data was at about RM 154.


Three-parameter relations also were developed for determining the amount of discharge in the Shorty Island side channel and average velocity at selected cross sections in the study reach. Simulated discharge for the side channel relative to measured data ranged from 0 to about 5,500 cubic feet per second, and simulated average velocity relative to measured data ranged from 0 to about 3.5 feet per second. Relations using other hydraulic, sediment/incipient motion, ecological, and biological characteristics also could be developed.


The relations also can be used in real time by accessing data from the Web. Discharge and stage data for two gaging stations, Tribal Hatchery (12310100) and Porthill (12322500), are available from the Idaho U.S. Geological Survey web page (URL: http://waterdata.usgs.gov/id/nwis/current/?type=flow). Because the coordinate axes of the three-parameter relations use discharge from the Tribal Hatchery gaging station and water-surface elevation from the Porthill gaging station, the location of the transition between backwater and free-flowing water can be determined for current conditions using the real-time data. Similarly, discharge in the Shorty Island side channel and (or) average velocity at selected cross sections also can be determined for current conditions.

Study Area

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Simulation of hydraulic characteristics in the white sturgeon spawning habitat of the Kootenai River near Bonners Ferry, Idaho
Series title:
Scientific Investigations Report
Series number:
2005-5110
Year Published:
2005
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Idaho Water Science Center
Description:
Report: vi, 30 p.; Data files
Country:
Canada;United States
State:
British Columbia;Idaho;Montana
Other Geospatial:
Kootenai River Drainage Basin
Projection:
Albers Equal-Area projection
Scale:
100000