Evaluation of the ground-water flow model for northern Utah Valley, Utah, updated to conditions through 2002

Scientific Investigations Report 2006-5064
Prepared in cooperation with the Central Utah Water Conservancy District; Jordan Valley Water Conservancy District representing Draper City; Highland Water Company; Utah Department of Natural Resources, Division of Water Rights; and the municipalities of Alpine, American Fork, Cedar Hills, Eagle Mountain, Highland, Lehi, Lindon, Orem, Pleasant Grove, Provo, Saratoga Springs, and Vineyard
By:

Links

Abstract

This report evaluates the performance of a numerical model of the ground-water system in northern Utah Valley, Utah, that originally simulated ground-water conditions during 1947-1980 and was updated to include conditions estimated for 1981-2002. Estimates of annual recharge to the ground-water system and discharge from wells in the area were added to the original ground-water flow model of the area.

The files used in the original transient-state model of the ground-water flow system in northern Utah Valley were imported into MODFLOW-96, an updated version of MODFLOW. The main model input files modified as part of this effort were the well and recharge files. Discharge from pumping wells in northern Utah Valley was estimated on an annual basis for 1981-2002. Although the amount of average annual withdrawals from wells has not changed much since the previous study, there have been changes in the distribution of well discharge in the area. Discharge estimates for flowing wells during 1981-2002 were assumed to be the same as those used in the last stress period of the original model because of a lack of new data. Variations in annual recharge were assumed to be proportional to changes in total surface-water inflow to northern Utah Valley. Recharge specified in the model during the additional stress periods varied from 255,000 acre-feet in 1986 to 137,000 acre-feet in 1992.

The ability of the updated transient-state model to match hydrologic conditions determined for 1981-2002 was evaluated by comparing water-level changes measured in wells to those computed by the model. Water-level measurements made in February, March, or April were available for 39 wells in the modeled area during all or part of 1981-2003. In most cases, the magnitude and direction of annual water-level change from 1981 to 2002 simulated by the updated model reasonably matched the measured change. The greater-than-normal precipitation that occurred during 1982-84 resulted in period-of-record high water levels measured in many of the observation wells in March 1984. The model-computed water levels at the end of 1982-84 also are among the highest for the period. Both measured and computed water levels decreased during the period representing ground-water conditions from 1999 to 2002. Precipitation was less than normal during 1999-2002.

The ability of the model to adequately simulate climatic extremes such as the wetter-than-normal conditions of 1982-84 and the drier-than-normal conditions of 1999-2002 indicates that the annual variation of recharge to the ground-water system based on streamflow entering the valley, which in turn is primarily dependent upon precipitation, is appropriate but can be improved. The updated transient-state model of the ground-water system in northern Utah Valley can be improved by making revisions on the basis of currently available data and information.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Evaluation of the ground-water flow model for northern Utah Valley, Utah, updated to conditions through 2002
Series title Scientific Investigations Report
Series number 2006-5064
DOI 10.3133/sir20065064
Edition Version 1.0
Year Published 2006
Language English
Publisher U.S. Geological Survey
Publisher location Salt Lake City, UT
Contributing office(s) Utah Water Science Center
Description iv, 28 p.
Country United States
State Utah
Other Geospatial Northern Utah Valley
Google Analytic Metrics Metrics page
Additional publication details