An Assessment of the Potential Effects of Aquifer Storage and Recovery on Mercury Cycling in South Florida

Scientific Investigations Report 2007-5240
Prepared in cooperation with the U.S. Army Corps of Engineers, Jacksonville, Florida
By: , and 

Links

Abstract

Mercury contamination in the environment is a global concern, especially in areas with abundant wetlands, such as south Florida. As the causal factors of this concern improve, scientists find that many factors that do not necessarily affect mercury concentrations, such as flooding and drying cycles, or changes to carbon and sulfate loading, can profoundly affect net mercury toxicity. Especially important are ecological factors that alter the conversion of mercury to methylmercury, which is the most bioaccumulative and toxic form of mercury in the environment. Resource managers, therefore, need to be aware of possible deleterious affects to mercury toxicity that could result from land and water management decisions. Several aspects of the Comprehensive Everglades Restoration Plan (CERP), including the planned Aquifer Storage and Recovery (ASR) program, have the potential to affect the abundance of methylmercury. In response to these concerns, the U.S. Geological Survey and U.S. Army Corps of Engineers collaborated on a study to evaluate how the proposed ASR program may affect mercury cycling and toxicity. This project was conducted as an initial assessment of the possible effects of the CERP ASR program on mercury in the south Florida environment. A twofold approach was employed: field sampling and controlled laboratory benchmark experiments. The field sampling survey collected ground-water samples from the Floridan and surficial aquifer systems for the ASR program to determine existing levels of mercury and methylmercury. Laboratory experiments, on the other hand, were designed to determine how the injected surface water would interact with the aquifer during storage periods. Overall, very low levels of mercury and methylmercury (mean values of 0.41 and 0.07 nanograms per liter, respectively) were observed in ground-water samples collected from the Floridan and surficial aquifer systems. These results indicate that 'recovered water' from the CERP ASR program would not represent a significant additional direct load of mercury and methyl-mercury to ASR 'receiving waters'. Net production of methylmercury, however, can result from additions of sulfate or natural organic carbon. Thus, because the Upper Floridan aquifer generally has elevated concentrations of sulfate (relative to ambient Everglades conditions) and surface waters near Lake Okeechobee (the assumed target for ASR receiving waters) are elevated in organic carbon and sulfate, at least some potential for increased methylmercury production might arise from the release of recovered ASR water to locations in or near the Everglades.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title An Assessment of the Potential Effects of Aquifer Storage and Recovery on Mercury Cycling in South Florida
Series title Scientific Investigations Report
Series number 2007-5240
DOI 10.3133/sir20075240
Edition -
Year Published 2007
Language ENGLISH
Publisher Geological Survey (U.S.)
Contributing office(s) Wisconsin Water Science Center
Description iv, 20 p.
Google Analytic Metrics Metrics page
Additional publication details