thumbnail

Hydrogeochemical Investigation of the Standard Mine Vicinity, Upper Elk Creek Basin, Colorado

Scientific Investigations Report 2007-5265

Prepared in cooperation with the U.S. Environmental Protection Agency
By:
, , ,

Links

Abstract

Ground- and surface-water samples were collected in the vicinity of the Standard Mine in west-central Colorado in order to characterize the local ground-water flow system, determine metal concentrations in local ground water, and better understand factors controlling the discharge of metal-rich waters from the mine. The sampling program included a one-time sampling of springs, mine adits, and exploration pits in Elk Basin and Redwell Basin; repeated sampling throughout one year of Standard Mine Level 1 discharge and Elk Creek near its confluence with Coal Creek; and a one-time sampling of underground sites in Levels 3 and 5 of the Standard Mine. Samples were analyzed for major ions and trace elements, stable isotopes of hydrogen (2H/1H) and oxygen (18O/16O), strontium isotopes, and tritium and dissolved noble gases (including helium isotopes) for tritium/helium-3 age dating. No clear correlations were observed between natural ground-water discharge locations and map-scale faults and lithology. Surface observations and the location of ground-water discharge suggest that simple topography, rather than large-scale geologic features, primarily controls the occurrence and flow of shallow ground water in Elk Basin. Discrete inflows from cross faults or other features were not observed in Levels 3 and 5 of the Standard Mine. Instead, water entered the mine as relatively persistent dripping from gouge and breccia within the Standard fault, which both tunnels follow. Therefore, the Standard fault itself is probably the main pathway of ground-water flow from the shallow subsurface to the mine workings. Low pH (as low as 3.2) and elevated concentrations of zinc, lead, cadmium, copper, and manganese (commonly exceeding water-quality standards for Elk Creek) were measured in samples located within or immediately downgradient of areas where sulfides are abundant, including the Standard fault, the Elk Lode portal, and the breccia pipe in Redwell Basin. Concentrations of these metals were typically low and pH values were circumneutral at surrounding locations. Metal concentrations in samples collected from underground workings in the Standard Mine were also generally higher than in samples collected at aboveground sites located outside of sulfide-rich areas. Metal concentrations in discharge from the Level 1 tunnel were among the highest measured in Elk Basin. All of these observations suggest that sulfide-rich mineralized rock is the primary control on dissolved metal concentrations and pH in ground water in the Standard Mine vicinity. Waste-rock piles apparently exert another major control on metal concentrations and pH; the lowest pH and highest metal concentrations typically are found in discharge from waste-rock piles. Concentrations of several chemical constituents along with strontium isotope data indicate that none of the sampled waters could have been the primary source of metals in discharge from Level 1. Therefore, this study did not identify the primary source location for metals in Level 1 discharge. Possible sources must be located below Levels 3 and 5 or farther back into the mountainside than the ends of Levels 3 and 5. Apparent tritium/helium-3 ground-water ages ranged from 0 to 9 yr, and a considerable majority were <1 yr. Tritium data and computed initial tritium values (measured tritium plus measured tritiogenic helium-3) suggest that much of the ground water in the Standard Mine vicinity was weeks to months old rather than years old. Tritium, d2H, and d18O data from water entering into and discharging from the Standard Mine displayed spatial and temporal patterns indicating that these tracers were influenced by seasonal variations in their concentration in precipitation. The tracer data therefore suggest that ground water entering into and discharging from the Standard Mine was largely composed of water <1 yr old. Pronounced seasonal variations in geochemistry in Level 1 discharge also are consistent with short r

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Hydrogeochemical Investigation of the Standard Mine Vicinity, Upper Elk Creek Basin, Colorado
Series title:
Scientific Investigations Report
Series number:
2007-5265
ISBN:
9781411320338
Edition:
Version 1.0
Year Published:
2008
Language:
ENGLISH
Publisher:
Geological Survey (U.S.)
Contributing office(s):
U.S. Geological Survey
Description:
viii, 130 p.