thumbnail

Water-Quality Conditions and Constituent Loads, Water Years 1996-2002, and Water-Quality Trends, Water Years 1983-2002, in the Scituate Reservoir Drainage Area, Rhode Island

Scientific Investigations Report 2008-5060

Prepared in cooperation with the Providence Water Supply Board
By:
, , and

Links

Abstract

The Scituate Reservoir is the primary source of drinking water for more than 60 percent of the population of Rhode Island. Water-quality data and streamflow data collected at 37 surface-water monitoring stations in the Scituate Reservoir drainage area, Rhode Island, from October 1, 1995 through September 30, 2002, (water years (WY) 1996-2002) were analyzed to determine water-quality conditions and constituent loads in the drainage area. Trends in water quality, including physical properties and concentrations of constituents, were investigated for the same period and for a longer period from October 1, 1982 through September 30, 2002 (WY 1983-2002). Water samples were collected and analyzed by Providence Water Supply Board, the agency that manages the Scituate Reservoir. Streamflow data were collected by the U.S. Geological Survey. Median values and other summary statistics were calculated for WY 1996-2002 for all 37 monitoring stations for pH, color, turbidity, alkalinity, chloride, nitrite, nitrate, total coliform bacteria, Escherichia coli (E. coli) bacteria, orthophosphate, iron, and manganese. Instantaneous loads and yields (loads per unit area) of total coliform and E. coli bacteria (indicator bacteria), chloride, nitrite, nitrate, orthophosphate, iron, and manganese were calculated for all sampling dates during WY 1996-2002 for the 23 stations with streamflow data. Values of physical properties and concentrations of constituents were compared to State and Federal water-quality standards and guidelines, and were related to streamflow, land-use characteristics, and road density. Tributary stream water in the Scituate Reservoir drainage area for WY 1996-2002 was slightly acidic (median pH of all stations equal to 6.1) and contained low concentrations of chloride (median 13 milligrams per liter (mg/L)), nitrate (median 0.04 mg/L as N), and orthophosphate (median 0.04 mg/L as P). Turbidity and alkalinity values also were low with median values of 0.62 nephelometric turbidity units and 4.8 mg/L as calcium carbonate, respectively. Indicator bacteria were detected in samples from all stations, but median concentrations were low, 23 and 9 colony-forming units per 100 mL for total coliform and E. coli bacteria, respectively. Median values of several physical properties and median concentrations of several constituents that can be related to human activities correlated positively with the percentages of developed land and correlated negatively with the percentages of forest cover in the drainage areas of the monitoring stations. Median concentrations of chloride also correlated positively with the density of roads in the drainage areas of monitoring stations, likely reflecting the effects of road-salt applications. Median values of color correlated positively with the percentages of wetlands in the drainage areas of monitoring stations, reflecting the natural sources of color in tributary stream waters. Negative correlations of turbidity, indicator bacteria, and chloride with streamflow likely reflect seasonal patterns, in which higher values and concentrations of these properties and constituents occur during low-flow conditions at the ends of water years. Similar seasonal patterns were observed for pH, alkalinity, and color. Loads and yields of chloride, nitrate, orthophosphate, and bacteria varied among monitoring stations in the Scituate Reservoir drainage area. Loads generally were higher at stations with larger drainage areas and at stations in the eastern, more developed parts of the Scituate Reservoir drainage area. Yields generally were higher at stations in the eastern parts of the drainage area. Upward trends in pH were identified for nearly half the monitoring stations and may reflect regional reductions in acid precipitation. Upward and downward trends were identified in chloride concentrations at various stations; upward trends may reflect the effects of increasing development, whereas strong downward trends at

Study Area

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Water-Quality Conditions and Constituent Loads, Water Years 1996-2002, and Water-Quality Trends, Water Years 1983-2002, in the Scituate Reservoir Drainage Area, Rhode Island
Series title:
Scientific Investigations Report
Series number:
2008-5060
Edition:
-
Year Published:
2008
Language:
ENGLISH
Publisher:
U.S. Geological Survey
Contributing office(s):
Massachusetts-Rhode Island Water Science Center
Description:
viii, 48 p.
Time Range Start:
1983-10-01
Time Range End:
2002-09-30