Hydrogeology, Water Chemistry, and Factors Affecting the Transport of Contaminants in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

Scientific Investigations Report 2008-5156

Prepared in cooperation with National Water-Quality Assessment Program Transport of Anthropogenic and Natural Contaminants (TANC) to Public-Supply Wells
, , ,



Ground-water chemistry in the zone of contribution of a public-supply well in Modesto, California, was studied by the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program's topical team for Transport of Anthropogenic and Natural Contaminants (TANC) to supply wells. Twenty-three monitoring wells were installed in Modesto to record baseline hydraulic information and to collect water-quality samples. The monitoring wells were divided into four categories that represent the chemistry of different depths and volumes of the aquifer: (1) water-table wells were screened between 8.5 and 11.7 m (meter) (28 and 38.5 ft [foot]) below land surface (bls) and were within 5 m (16 ft) of the water table; (2) shallow wells were screened between 29 and 35 m (95 and 115 ft) bls; (3) intermediate wells were screened between 50.6 and 65.5 m (166 and 215 ft) bls; and (4) deep wells are screened between 100 to 106 m (328 and 348 ft) bls. Inorganic, organic, isotope, and age-dating tracers were used to characterize the geochemical conditions in the aquifer and understand the mechanisms of mobilization and movement of selected constituents from source areas to a public-supply well. The ground-water system within the study area has been significantly altered by human activities. Water levels in monitoring wells indicated that horizontal movement of ground water was generally from the agricultural areas in the northeast towards a regional water-level depression within the city in the southwest. However, intensive pumping and irrigation recharge in the study area has caused large quantities of ground water to move vertically downward within the regional and local flow systems. Analysis of age tracers indicated that ground-water age varied from recent recharge at the water table to more than 1,000 years in the deep part of the aquifer. The mean age of shallow ground water was determined to be between 30 and 40 years. Intermediate ground water was determined to be a mixture of modern (Post-1950) and old (Pre-1950) ground water. As a result, concentrations of age tracers were detectable but diluted by older ground water. Deep ground water generally represented water that was recharged under natural conditions and therefore had much older ages. Ground water reaching the public-supply well was a mixture of older intermediate and deep ground water and young shallow ground water that has been anthropogenically-influenced to a greater extent than intermediate ground water. Uranium and nitrate pose the most significant threat to the quality of water discharged from the public-supply well. Although pesticides and VOCs were present in ground water from the public-supply well and monitoring wells, currently concentrations of these contaminants are generally less than one-hundredth the concentration of drinking water standards. In contrast, both uranium and nitrate were above half the concentration of drinking water standards for public-supply well samples, and were above drinking water standards for several water-table and shallow monitoring wells. Shallow ground water contributes roughly 20 percent of the total flow to the public-supply well and was the entry point of most contaminants reaching the public-supply well. Naturally-occurring uranium, which is commonly adsorbed to aquifer sediments, was mobilized by oxygen-rich, high-alkalinity water, causing concentrations in some monitoring wells to be above the drinking-water standard of 30 ug/L (microgram per liter). Adsorption experiments, sediment extractions, and uranium isotopes indicated uranium in water-table and shallow ground water was leached from aquifer sediments. Uranium is strongly correlated to bicarbonate concentrations (as measured by alkalinity) in ground water. Bicarbonate can effectively limit uranium adsorption to sediments. As a result, continued downward movement of high-alkalinity, oxygen-rich ground water will likely lead to larger portions of the aquifer having

Geospatial Extents

Additional Publication Details

Publication type:
Publication Subtype:
USGS Numbered Series
Hydrogeology, Water Chemistry, and Factors Affecting the Transport of Contaminants in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California
Series title:
Scientific Investigations Report
Series number:
Year Published:
Geological Survey (U.S.)
Contributing office(s):
California Water Science Center
xii, 78 p.