Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07

Scientific Investigations Report 2008-5162
Prepared in cooperation with the Bureau of Land Management
By: , and 

Links

Abstract

Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were all less than laboratory reporting limits in the deeper sediment sample, but 15 compounds were detected in the uppermost 0.2 foot of sediment. Published concentrations determined to affect benthic aquatic life also were exceeded for copper, zinc, benz[a]anthracene, phenanthrene, and pyrene in the shallow sediment sample. Isotopic composition of water (oxygen 18/16 and hydrogen 2/1 ratios) for samples of shallow ground water, lakewater, and interstitial water from Lake Tahoe indicate the lake was well mixed with a slight ground-water signature in samples collected near the lakebed. One interstitial sample from 0.8 foot beneath the lakebed was nearly all ground water and concentrations of nitrogen and phosphorus were comparable to concentrations in shallow ground-water samples. However, ammonium represented 65 percent of filtered nitrogen in this interstitial sample, but only 10 percent of the average nitrogen in ground-water samples. Nitrate was less than reporting limits in interstitial water, compared with mean nitrate concentration of 750 micrograms per liter in ground-water samples, indicating either active dissimilative nitrate reduction to ammonium by micro-organisms or hydrolysis of organic nitrogen to ammonium with concomitant nitrate reduction. The other interstitial sample falls along a mixing line between ground water and lake water and most of the nitrogen was organic nitrogen.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Hydrologic and Water-Quality Responses in Shallow Ground Water Receiving Stormwater Runoff and Potential Transport of Contaminants to Lake Tahoe, California and Nevada, 2005-07
Series title Scientific Investigations Report
Series number 2008-5162
DOI 10.3133/sir20085162
Edition Version 1.1, Revised Dec 2008
Year Published 2008
Language ENGLISH
Publisher U.S. Geological Survey
Contributing office(s) Nevada Water Science Center
Description Report: vi, 65 p.; Appendixes
Time Range Start 2005-01-01
Time Range End 2007-12-31
Google Analytic Metrics Metrics page
Additional publication details