thumbnail

Occurrence of Organic Wastewater Compounds in the Tinkers Creek Watershed and Two Other Tributaries to the Cuyahoga River, Northeast Ohio

Scientific Investigations Report 2008-5173

Prepared in cooperation with the Ohio Water Development Authority; National Park Service; Cities of Aurora, Bedford, Bedford Heights, Solon, and Twinsburg; Portage and Summit Counties; and in collaboration with the Ohio Environmental Protection Agency
By:
, , , , ,

Links

Abstract

The U.S. Geological Survey - in cooperation with the Ohio Water Development Authority; National Park Service; Cities of Aurora, Bedford, Bedford Heights, Solon, and Twinsburg; and Portage and Summit Counties - and in collaboration with the Ohio Environmental Protection Agency, did a study to determine the occurrence and distribution of organic wastewater compounds (OWCs) in the Tinkers Creek watershed in northeastern Ohio. In the context of this report, OWCs refer to a wide range of compounds such as antibiotics, prescription and nonprescription pharmaceuticals, personal-care products, household and industrial compounds (for example, antimicrobials, fragrances, surfactants, fire retardants, and so forth) and a variety of other chemicals. Canisters containing polar organic integrative sampler (POCIS) and semipermeable membrane device (SPMD) media were deployed instream for a 28-day period in Mayand June 2006 at locations upstream and downstream from seven wastewater-treatment-plant (WWTP) outfalls in the Tinkers Creek watershed, at a site on Tinkers Creek downstream from all WWTP discharges, and at one reference site each in two nearby watersheds (Yellow Creek and Furnace Run) that drain to the Cuyahoga River. Streambed-sediment samples also were collected at each site when the canisters were retrieved. POCIS and SPMDs are referred to as 'passive samplers' because they sample compounds that they are exposed to without use of mechanical or moving parts. OWCs detected in POCIS and SPMD extracts are referred to in this report as 'detections in water' because both POCIS and SPMDs provided time-weighted measures of concentration in the stream over the exposure period. Streambed sediments also reflect exposure to OWCs in the stream over a long period of time and provide another OWC exposure pathway for aquatic organisms. Four separate laboratory methods were used to analyze for 32 antibiotic, 20 pharmaceutical, 57 to 66 wastewater, and 33 hydrophobic compounds. POCIS and streambed-sediment extracts were analyzed by both the pharmaceutical and wastewater methods. POCIS extracts also were analyzed by the antibiotic method, and SPMD extracts were analyzed by the hydrophobic-compound method. Analytes associated with a given laboratory method are referred to in aggregate by the method name (for example, antibiotic-method analytes are referred to as 'antibiotic compounds') even though some analytes associated with the method may not be strictly classified as such. In addition, some compounds were included in the analyte list for more than one laboratory method. For a given sample matrix, individual compounds detected by more than one analytical method are included independently in counts for each method. A total of 12 antibiotic, 20 pharmaceutical, 41 wastewater, and 22 hydrophobic compounds were detected in water at one or more sites. Eight pharmaceutical and 37 wastewater compounds were detected in streambed sediments. The numbers of detections at reference sites tended to be in the low range of detection counts observed in the Tinkers Creek watershed for a given analytical method. Also, the total numbers of compounds detected in water and sediment at the reference sites were less than the total numbers of compounds detected at sites in the Tinkers Creek watershed. With the exception of hydrophobic compounds, it was common at most sites to have more compounds detected in samples collected downstream from WWTP outfalls than in corresponding samples collected upstream from the outfalls. This was particularly true for antibiotic, pharmaceutical, and wastewater compounds in water. In contrast, it was common to have more hydrophobic compounds detected in samples collected upstream from WWTP outfalls than downstream. Caffeine, fluoranthene, N,N-diethyl-meta-toluamide (DEET), phenanthrene, and pyrene were detected in water at all sites in the Tinkers Creek watershed, irrespective of whether the site was upstream or downs

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Occurrence of Organic Wastewater Compounds in the Tinkers Creek Watershed and Two Other Tributaries to the Cuyahoga River, Northeast Ohio
Series title:
Scientific Investigations Report
Series number:
2008-5173
ISBN:
9781411322783
Edition:
-
Year Published:
2008
Language:
ENGLISH
Publisher:
Geological Survey (U.S.)
Contributing office(s):
Ohio Water Science Center
Description:
vi, 60 p.
Time Range Start:
2006-05-08
Time Range End:
2006-06-07