Comparison of ASTER- and AVIRIS-Derived Mineraland Vegetation Maps of the White Horse Replacement Alunite Deposit and Surrounding Area, Marysvale Volcanic Field, Utah

Scientific Investigations Report 2009-5117




This report presents and compares mineral and vegetation maps of parts of the Marysvale volcanic field in west-central Utah that were published in a recent paper describing the White Horse replacement alunite deposit. Detailed, field-verified maps of the deposit were produced from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data acquired from a low-altitude Twin Otter turboprop airborne platform. Reconnaissance-level maps of surrounding areas including the central and northern Tushar Mountains, Pahvant Range, and portions of the Sevier Plateau to the east were produced from visible, near-infrared, and shortwave-infrared data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor carried aboard the Terra satellite platform. These maps are also compared to a previously published mineral map of the same area generated from AVIRIS data acquired from the high-altitude NASA ER-2 jet platform. All of the maps were generated by similar analysis methods, enabling the direct comparison of the spatial scale and mineral composition of surface geologic features that can be identified using the three types of remote sensing data. The high spatial (2-17 meter) and spectral (224 bands) resolution AVIRIS data can be used to generate detailed mineral and vegetation maps suitable for geologic and geoenvironmental studies of individual deposits, mines, and smelters. The lower spatial (15-30 meter) and spectral (9 bands) resolution ASTER data are better suited to less detailed mineralogical studies of lithology and alteration across entire hydrothermal systems and mining districts, including regional mineral resource and geoenvironmental assessments. The results presented here demonstrate that minerals and mineral mixtures can be directly identified using AVIRIS and ASTER data to elucidate spatial patterns of mineralogic zonation; AVIRIS data can enable the generation of maps with significantly greater detail and accuracy. The vegetation mapping results suggest that ASTER data may provide an efficient alternative to spectroscopic data for studies of burn severity after wildland fires. A new, semiautomated methodology for the analysis of ASTER data is presented that is currently being applied to ASTER data coverage of large areas for regional assessments of mineral-resource potential and mineral-environmental effects. All maps are presented in a variety of digital formats, including jpeg, pdf, and ERDAS Imagine (.img). The Imagine format files are georeferenced and suitable for viewing with other geospatial data in Imagine, ArcGIS, and ENVI. The mineral and vegetation maps are attributed so that the material identified for a pixel can be determined easily in ArcMap by using the Identify tool and in Imagine by using the Inquire Cursor tool.

Geospatial Extents

Additional Publication Details

Publication type:
Publication Subtype:
USGS Numbered Series
Comparison of ASTER- and AVIRIS-Derived Mineraland Vegetation Maps of the White Horse Replacement Alunite Deposit and Surrounding Area, Marysvale Volcanic Field, Utah
Series title:
Scientific Investigations Report
Series number:
Year Published:
U.S. Geological Survey
Contributing office(s):
Central Mineral Resources Team
Report: iv, 31 p.; Downloads Directory
Universal Transverse Mercator
Online Only (Y/N):
Additional Online Files(Y/N):