thumbnail

Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

Scientific Investigations Report 2010-5109

National Water Availability and Use Pilot Program
By:
, ,

Links

Abstract

A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow. Lastly, it describes several categories of limitations and discusses ways of extending the regional model to address issues at the local scale. Results of the simulations portray a regional groundwater-flow system that, over time, has largely maintained its natural predevelopment configuration but that locally has been strongly affected by well withdrawals. The quantity of rainfall in the Lake Michigan Basin and adjacent areas supports a dense surface-water network and recharge rates consistent with generally shallow water tables and predominantly shallow groundwater flow. At the regional scale, pumping has not caused major modifications of the shallow flow system, but it has resulted in decreases in base flow to streams and in direct discharge to Lake Michigan (about 2 percent of the groundwater discharged and about 0.5 cubic foot per second per mile of shoreline). On the other hand, well withdrawals have caused major reversals in regional flow patterns around pumping centers in deep, confined aquifers - most noticeably in the Cambrian-Ordovician aquifer system on the west side of Lake Michigan near the cities of Green Bay and Milwaukee in eastern Wisconsin, and around Chicago in northeastern Illinois, as well as in some shallow bedrock aquifers (for example, in the Marshall aquifer near Lansing, Mich.). The reversals in flow have been accompanied by large drawdowns with consequent local decrease in storage. On the west side of Lake Michigan, groundwater withdrawals have caused appreciable migration of the deep groundwater divides. Before the advent of pumping, the deep Lake Michigan groundwater-basin boundaries extended west of the Lake Michigan surface-water basin boundary, in some places by tens of miles. Over time, the pumping centers have replaced Lake Michigan as the regional sink for the deep flow system. The regional model is intended to support the framework pilot study of water availability and use for the Great Lakes Basin (Reeves, in press).

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies
Series title:
Scientific Investigations Report
Series number:
2010-5109
Edition:
-
Year Published:
2010
Language:
ENGLISH
Publisher:
U.S. Geological Survey
Contributing office(s):
National Water Availability and Use Program
Description:
Downloads: Front/Inside/Back Cover; Front Matter/Model Construction, 1-43 p.; Model Construction II, 44- 101 p.; Model Construction/Model Calibration/Model Results, 102-196 p.; Model Results II/ Alternative Conceptual Models/Model Sensitivity/Model Limitations/Suggestions for Future Work/Summary/Conclusions/Feferences, 197-248 p.; Appendixes 1-9; Manuscript Part 1: non-508 compliant, 118 p.; Manuscript Part 2: non 508 compliant, 119-248 p.; Appendixes 1-9/Backcover: non-508 compliant, 249-379 p.
Online Only (Y/N):
N
Additional Online Files(Y/N):
Y