thumbnail

Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011

Scientific Investigations Report 2013-5044

Prepared in cooperation with the White Bear Lake Conservation District, Minnesota Pollution Control Agency, Minnesota Department of Natural Resources, Minnesota Board of Water and Soil Resources, Twin Cities Metropolitan Council, and the Groundwater/Surface-Water Interaction Partners
By:
, , , , , and

Links

Abstract

The U.S. Geological Survey, in cooperation with the White Bear Lake Conservation District, the Minnesota Pollution Control Agency, the Minnesota Department of Natural Resources, and other State, county, municipal, and regional planning agencies, watershed organizations, and private organizations, conducted a study to characterize groundwater and surface-water interactions near White Bear Lake through 2011. During 2010 and 2011, White Bear Lake and other lakes in the northeastern part of the Twin Cities Metropolitan Area were at historically low levels. Previous periods of lower water levels in White Bear Lake correlate with periods of lower precipitation; however, recent urban expansion and increased pumping from the Prairie du Chien-Jordan aquifer have raised the question of whether a decline in precipitation is the primary cause for the recent water-level decline in White Bear Lake. Understanding and quantifying the amount of groundwater inflow to a lake and water discharge from a lake to aquifers is commonly difficult but is important in the management of lake levels. Three methods were used in the study to assess groundwater and surface-water interactions on White Bear Lake: (1) a historical assessment (1978-2011) of levels in White Bear Lake, local groundwater levels, and their relation to historical precipitation and groundwater withdrawals in the White Bear Lake area; (2) recent (2010-11) hydrologic and water-quality data collected from White Bear Lake, other lakes, and wells; and (3) water-balance assessments for White Bear Lake in March and August 2011. An analysis of covariance between average annual lake-level change and annual precipitation indicated the relation between the two variables was significantly different from 2003 through 2011 compared with 1978 through 2002, requiring an average of 4 more inches of precipitation per year to maintain the lake level. This shift in the linear relation between annual lake-level change and annual precipitation indicated the net effect of the non-precipitation terms on the water balance has changed relative to precipitation. The average amount of precipitation required each year to maintain the lake level has increased from 33 inches per year during 1978-2002 to 37 inches per year during 2003-11. The combination of lower precipitation and an increase in groundwater withdrawals can explain the change in the lake-level response to precipitation. Annual and summer groundwater withdrawals from the Prairie du Chien-Jordan aquifer have more than doubled from 1980 through 2010. Results from a regression model constructed with annual lake-level change, annual precipitation minus evaporation, and annual volume of groundwater withdrawn from the Prairie du Chien-Jordan aquifer indicated groundwater withdrawals had a greater effect than precipitation minus evaporation on water levels in the White Bear Lake area for all years since 2003. The recent (2003-11) decline in White Bear Lake reflects the declining water levels in the Prairie du Chien-Jordan aquifer; increases in groundwater withdrawals from this aquifer are a likely cause for declines in groundwater levels and lake levels. Synoptic, static groundwater-level and lake-level measurements in March/April and August 2011 indicated groundwater was potentially flowing into White Bear Lake from glacial aquifers to the northeast and south, and lake water was potentially discharging from White Bear Lake to the underlying glacial and Prairie du Chien-Jordan aquifers and glacial aquifers to the northwest. Groundwater levels in the Prairie du Chien-Jordan aquifer below White Bear Lake are approximately 0 to 19 feet lower than surface-water levels in the lake, indicating groundwater from the aquifer likely does not flow into White Bear Lake, but lake water may discharge into the aquifer. Groundwater levels from March/April to August 2011 declined more than 10 feet in the Prairie du Chien-Jordan aquifer south of White Bear Lake and to the north in Hugo, Minnesota. Water-quality analyses of pore water from nearshore lake-sediment and well-water samples, seepage-meter measurements, and hydraulic-head differences measured in White Bear Lake also indicated groundwater was potentially flowing into White Bear Lake from shallow glacial aquifers to the east and south. Negative temperature anomalies determined in shallow waters in the water-quality survey conducted in White Bear Lake indicated several shallow-water areas where groundwater may be flowing into the lake from glacial aquifers below the lake. Cool lake-sediment temperatures (less than 18 degrees Celsius) were measured in eight areas along the northeast, east, south, and southwest shores of White Bear Lake, indicating potential areas where groundwater may flow into the lake. Stable isotope analyses of well-water, precipitation, and lake-water samples indicated wells downgradient from White Bear Lake screened in the glacial buried aquifer or open to the Prairie du Chien-Jordan aquifer receive a mixture of surface water and groundwater; the largest surface-water contributions are in wells closer to White Bear Lake. A wide range in oxygen-18/oxygen-16 and deuterium/protium ratios was measured in well-water samples, indicating different sources of water are supplying water to the wells. Well water with oxygen-18/oxygen-16 and deuterium/protium ratios that plot close to the meteoric water line consisted mostly of groundwater because deuterium/protium ratios for most groundwater usually are similar to ratios for rainwater and snow, plotting close to meteoric water lines. Well water with oxygen-18/oxygen-16 and deuterium/protium ratios that plot between the meteoric water line and ratios for the surface-water samples from White Bear Lake consists of a mixture of surface water and groundwater; the percentage of each source varies relative to its ratios. White Bear Lake is the likely source of the surface water to the wells that have a mixture of surface water and groundwater because (1) it is the only large, deep lake near these wells; (2) these wells are near and downgradient from White Bear Lake; and (3) these wells obtain their water from relatively deep depths, and White Bear Lake is the deepest lake in that area. The percentages of surface-water contribution to the three wells screened in the glacial buried aquifer receiving surface water were 16, 48, and 83 percent. The percentages of surface-water contribution ranged from 5 to 79 percent for the five wells open to the Prairie du Chien-Jordan aquifer receiving surface water; wells closest to White Bear Lake had the largest percentages of surface-water contribution. Water-balance analysis of White Bear Lake in March and August 2011 indicated a potential discharge of 2.8 and 4.5 inches per month, respectively, over the area of the lake from the lake to local aquifers. Most of the sediments from a 12.4-foot lake core collected at the deepest part of White Bear Lake consisted of silts, sands, and gravels likely slumped from shallower waters, with a very low amount of low-permeability, organic material.

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Groundwater and surface-water interactions near White Bear Lake, Minnesota, through 2011
Series title:
Scientific Investigations Report
Series number:
2013-5044
Year Published:
2013
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Minnesota Water Science Center
Description:
ix, 73 p.; Downloads Directory
Number of Pages:
88
Time Range Start:
2011-01-01
Time Range End:
2011-12-31
Country:
United States
State:
Minnesota
County:
Anoka;Washington;Ramsey
City:
White Bear Lake;Minneapolis
Online Only (Y/N):
Y
Additional Online Files(Y/N):
Y