Hydrogeologic framework, arsenic distribution, and groundwater geochemistry of the glacial-sediment aquifer at the Auburn Road landfill superfund site, Londonderry, New Hampshire

Scientific Investigations Report 2013-5123

Prepared in cooperation with the New Hampshire Department of Environmental Services and in collaboration with the U.S. Environmental Protection Agency



Leachate continues to be generated from landfills at the Auburn Road Landfill Superfund Site in Londonderry, New Hampshire. Impermeable caps on the three landfills at the site inhibit direct infiltration of precipitation; however, high water-table conditions allow groundwater to interact with landfill materials from below, creating leachate and ultimately reducing conditions in downgradient groundwater. Reducing conditions can facilitate arsenic transport by allowing it to stay in solution or by liberating arsenic adsorbed to surfaces and from geologic sources, such as glacial sediments and bedrock. The site occupies a 180-acre parcel of land containing streams, ponds, wetlands, and former gravel pits located in glacial sediment. Four areas, totaling 14 acres, including three landfills and one septage lagoon, were used for waste disposal. The site was closed in 1980 after volatile organic compounds associated with industrial waste dumping were detected. The site was added to the U.S. Environmental Protection Agency National Priority List in 1982, and the landfills were capped in 1996. Although volatile organic compound concentrations in groundwater have declined substantially, some measurable concentrations remain. Temporally variable and persistent elevated arsenic concentrations have been measured in groundwater affected by the landfill leachate. Microbial consumption of carbon found in leachate is a driver of reducing conditions that liberate arsenic at the site. In addition to sources of carbon in landfill leachate, wetland areas throughout the site also could contribute carbon to groundwater, but it is currently unknown if any of the wetland areas have downward or reversing gradients that could allow the infiltration of surface water to groundwater. Red-stained sediments and water indicate iron-rich groundwater discharge to surface water and are also associated with elevated concentrations of arsenic in sediment and groundwater. Ironrich groundwater seeps have been observed in the wetland, streams, and pond downgradient of the landfills. Piezometers were installed in some of these locations to confirm groundwater discharge, measure vertical-flow gradients, and to provide a way to sample the discharging groundwater. Understanding the movement of leachate in groundwater is complicated by the presence of preferential flow paths through aquifer materials with differing hydraulic properties; these preferential flow paths can affect rates of recharge, geochemical conditions, and contaminant fluxes. In areas adjacent to the three capped landfills, infiltration of precipitation containing oxygenated water through permeable deltaic sediments in the former gravel pit area causes increases in dissolved oxygen concentrations and decreases in arsenic concentrations. Layered deltaic sediments produce anisotropic hydraulic characteristics and zones of high hydraulic conductivity. The glacial-sediment aquifer also includes glaciolacustrine sediments that have low permeability and limit infiltration at the surface Discharge of leachate-affected groundwater may be limited in areas of organic muck on the bottom of Whispering Pines Pond because the muck may act as a semiconfining layer. Geophysical survey results were used to identify several areas with continuous beds of muck and an underlying highresistivity layer on top of a layer of low resistivity that may represent leachate-affected groundwater. The high-resistivity layer is likely groundwater associated with oxygenated recharge, which would cause arsenic to adsorb onto aquifer sediments and reduce concentrations of dissolved arsenic in groundwater. Surface and borehole geophysical data collected in 2011 were used to identify potentially high-permeability or contaminated zones in the aquifer (preferential flowpaths) as well as low-permeability zones that may promote contamination through back diffusion. Some groundwater in parts of the glacial-sediment aquifer where the leachate plumes were present had low electrical resistivity, low dissolved oxygen, and high concentrations of arsenic. Low-resistivity zones in the underlying bedrock were associated with fractures that also may contain leachate. Although surveying the fractured bedrock was not a specific objective of this study, the results suggest that such a survey would help to determine if leachate and associated concentrations of arsenic are migrating downward into the fractured-bedrock-aquifer system. An uncalibrated, one-dimensional, reactive-transport model was used to assess several conditions that affect arsenic mobility. The results indicate that reductive dissolution and desorption from glacial sediments control dissolved arsenic concentrations. Parameter sensitivity analysis was used to identify key data that are needed in order to accurately assess the time required for arsenic concentrations to fall to levels below the maximum contaminant level at the site. Quantifying this time will require accurate characterization of carbon, sediment-surface sorption sites, and groundwater fluxes at the site.

Geospatial Extents

Additional Publication Details

Publication type:
Publication Subtype:
USGS Numbered Series
Hydrogeologic framework, arsenic distribution, and groundwater geochemistry of the glacial-sediment aquifer at the Auburn Road landfill superfund site, Londonderry, New Hampshire
Series title:
Scientific Investigations Report
Series number:
Year Published:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
New England Water Science Center
vii, 58 p.
Number of Pages:
United States
New Hampshire
Other Geospatial:
Auburn Road Landfill
Online Only (Y/N):
Additional Online Files(Y/N):