thumbnail

Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12

Scientific Investigations Report 2014-5132

Prepared in cooperation with the Lower Boise Watershed Council and Idaho Department of Environmental Quality
By:
, ,
DOI: 10.3133/sir20145132

Links

Abstract

Water-quality conditions were studied in selected tributaries of the lower Boise River during water years 2009–12, including Fivemile and Tenmile Creeks in 2009, Indian Creek in 2010, and Mason Creek in 2011 and 2012. Biological samples, including periphyton biomass and chlorophyll-a, benthic macroinvertebrates, and fish were collected in Mason Creek in October 2011. Synoptic water-quality sampling events were timed to coincide with the beginning and middle of the irrigation season as well as the non-irrigation season, and showed that land uses and irrigation practices affect water quality in the selected tributaries. Large increases in nutrient and sediment concentrations and loads occurred over relatively short stream reaches and affected nutrient and sediment concentrations downstream of those reaches. Escherichia coli (E. coli) values increased in study reaches adjacent to pastured lands or wastewater treatment plants, but increased E. coli values at upstream locations did not necessarily affect E. coli values at downstream locations. A spatial loading analysis identified source areas for nutrients, sediment, and E. coli, and might be useful in selecting locations for water-quality improvement projects. Effluent from wastewater treatment plants increased nutrient loads in specific reaches in Fivemile and Indian Creeks. Increased suspended-sediment loads were associated with increased discharge from irrigation returns in each of the studied tributaries. Samples collected during or shortly after storms showed that surface runoff, particularly during the winter, may be an important source of nutrients in tributary watersheds with substantial agricultural land use. Concentrations of total phosphorus, suspended sediment, and E. coli exceeded regulatory water-quality targets or trigger levels at one or more monitoring sites in each tributary studied, and exceedences occurred during irrigation season more often than during non-irrigation season.


As with water-quality sampling results, bottom-sediment samples analyzed for contaminants of emerging concern indicated that adjacent land uses can affect in-stream conditions. Contaminants of emerging concern were detected in four categories: urban compounds, industrial compounds, fecal steroids, and personal care products. Compounds in one or more of the four contaminant categories were detected at higher concentrations in upstream sites than in downstream sites in the tributaries and in the lower Boise River. High concentrations of compounds in upstream locations indicated that adjacent land use might be an important factor in contributing contaminants of emerging concern to the lower Boise River watershed.


Expanded monitoring at Mason Creek near the mouth included a streamgage, a continuous water-quality monitor, and monthly water-quality sample collection. Data collected during expanded monitoring efforts at Mason Creek near the mouth provided information to develop and compare water-quality models. Regression models were developed using turbidity, discharge, and seasonality as surrogates to estimate concentrations of water-quality constituents. Daily streamflow also was used in a load model to estimate daily loads of water-quality constituents. Surrogate regression models may be useful for long-term monitoring and generally performed better than other models to estimate concentrations and loads of total phosphorus, total nitrogen, and suspended sediment in Mason Creek.


Biological sampling results from Mason Creek showed low periphyton biomass and chlorophyll-a concentrations compared to those historically measured in the Boise River near Parma, Idaho, during October and November. The most abundant invertebrate found in Mason Creek was the highly tolerant and invasive New Zealand mudsnail (Potamopyrgus antipodarum). The presence of small rainbow trout (90 millimeters) may indicate salmonid spawning in Mason Creek. The rangeland-fish-index score of 58 for Mason Creek is comparable to rangeland-fish-index scores calculated for the Boise River near Middleton, indicating intermediate biotic condition.

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Water-quality and biological conditions in selected tributaries of the Lower Boise River, southwestern Idaho, water years 2009-12
Series title:
Scientific Investigations Report
Series number:
2014-5132
DOI:
10.3133/sir20145132
Year Published:
2014
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Idaho Water Science Center
Description:
Report: 58 p.; 3 Appendixes
Number of Pages:
70
Time Range Start:
2008-10-01T12:00:00
Time Range End:
2012-09-30T12:00:00
Country:
United States
State:
Idaho
Other Geospatial:
Boise River
Online Only (Y/N):
Y
Additional Online Files(Y/N):
Y