An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut

Water-Resources Investigations Report 2001-4133
Prepared in cooperation with United Technologies Corporation
By: , and 

Links

Abstract

The U.S. Geological Survey conducted an integrated geophysical and hydraulic investigation at the Norden Systems, Inc. site in Norwalk, Connecticut, where chlorinated solvents have contaminated a fractured-rock aquifer. Borehole, borehole-to-borehole, surface-geophysical, and hydraulic methods were used to characterize the site bedrock lithology and structure, fractures, and transmissive zone hydraulic properties. The geophysical and hydraulic methods included conventional logs, borehole imagery, borehole radar, flowmeter under ambient and stressed hydraulic conditions, and azimuthal square-array direct-current resistivity soundings.

Integrated interpretation of geophysical logs at borehole and borehole-to-borehole scales indicates that the bedrock foliation strikes northwest and dips northeast, and strikes north-northeast to northeast and dips both southeast and northwest. Although steeply dipping fractures that cross-cut foliation are observed, most fractures are parallel or sub-parallel to foliation. Steeply dipping reflectors observed in the radar reflection data from three boreholes near the main building delineate a north-northeast trending feature interpreted as a fracture zone. Results of radar tomography conducted close to a suspected contaminant source area indicate that a zone of low electromagnetic (EM) velocity and high EM attenuation is present above 50 ft in depth - the region containing the highest density of fractures. Flowmeter logging was used to estimate hydraulic properties in the boreholes. Thirty-three transmissive fracture zones were identified in 11 of the boreholes. The vertical separation between transmissive zones typically is 10 to 20 ft.

Open-hole and discrete-zone transmissivity was estimated from heat-pulse flowmeter data acquired under ambient and stressed conditions. The open-hole transmissivity ranges from 2 to 86 ft2/d. The estimated transmissivity of individual transmissive zones ranges from 0.4 to 68 ft2/d. Drawdown monitoring in nearby boreholes under pumping conditions identified hydraulic connections along a northeast-southwest trend between boreholes as far as 560 ft apart. The vertical distribution of fractures can be described by power law functions, which suggest that the fracture network contains transmissive zones consisting of closely spaced fractures surrounded by a less fractured and much less permeable rock mass.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title An integrated geophysical and hydraulic investigation to characterize a fractured-rock aquifer, Norwalk, Connecticut
Series title Water-Resources Investigations Report
Series number 2001-4133
DOI 10.3133/wri014133
Year Published 2002
Language English
Publisher U.S. Geological Survey
Contributing office(s) Office of Ground Water, Toxic Substances Hydrology Program, Wisconsin Water Science Center
Description v, 22 p.
Country United States
State Connecticut
City Norwalk
Scale 1
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details