thumbnail

Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

Water-Resources Investigations Report 2001-4195

By:
, , , , ,

Links

Abstract

The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for each delineated area. Each area, referred to as an ET unit, generally consists of one or more assemblages of local phreatophytes or a unique moist soil environment. Ten ET units are identified throughout the DVRFS based on differences in spectral-reflectance characteristics. Spectral differences are determined from satellite imagery acquired June 21, 1989, and June 13, 1992. The units identified include areas of open playa, moist bare soils, sparse to dense vegetation, and open water. ET rates estimated for each ET unit range from a few tenths of a foot per year for open playa to nearly 9 feet per year for open water. Mean annual ET estimates are computed for each discharge area by summing estimates of annual ET from each ET unit within a discharge area. The estimate of annual ET from each ET unit is computed as the product of an ET unit's acreage and estimated ET rate. Estimates of mean annual ET range from 450 acre-feet in the Franklin Well area to 30,000 acre-feet in Sarcobatus Flat. Ground-water discharge is estimated as annual ET minus that part of ET attributed to local precipitation. Mean annual ground-water discharge estimates range from 350 acre-feet in the Franklin Well area to 18,000 acre-feet in Ash Meadows. Generally, these estimates are greater for the northern discharge areas (Sarcobatus Flat and Oasis Valley) and less for the southern discharge areas (Franklin Lake, Shoshone area, and Tecopa/ California Valley area) than those previously reported.

Geospatial Extents

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California
Series title:
Water-Resources Investigations Report
Series number:
2001-4195
Year Published:
2001
Language:
English
Publisher:
U.S. Geological Survey
Publisher location:
Reston, VA
Description:
-
Country:
United States
State:
California;Nevada