Case study for delineating a contributing area to a well in a fractured siliciclastic-bedrock aquifer near Lansdale, Pennsylvania

Water-Resources Investigations Report 2002-4271

, , , and



A supply well used by the North Penn Water Authority near Lansdale, Pa., was selected as a case study for delineating a contributing area in a fractured siliciclastic-bedrock aquifer. The study emphasized the importance of refining the understanding of factors that control ground-water movement to the well by conducting (1) geophysical logging and flow measurements, (2) ground-water level monitoring, (3) aquifer testing, and (4) geochemical sampling. This approach could be applicable for other wells in siliciclastic-bedrock terranes, especially those of Triassic age in southeastern Pennsylvania. The principal methods for refining the understanding of hydrology at supply well MG-1125 were aquifer testing, water-level measurements, and geophysical logging. Results of two constant-discharge aquifer tests helped estimate the transmissivity of water-producing units and evaluate the anisotropy caused by dipping beds. Results from slug tests provided estimates of transmissivity that were used to evaluate the results from the constant-discharge aquifer tests. Slug tests also showed the wide distribution of transmissivity, indicating that ground-water velocities must vary considerably in the well field. Water-level monitoring in observation wells allowed maps of the potentiometric surface near the well field to be drawn. The measurements also showed that the hydraulic gradient can change abruptly in response to pumping from nearby supply wells. Water levels measured at a broader regional scale in an earlier study also provided a useful view of the potentiometric surface for purposes of delineating the contributing area. Geophysical logging and measurements of flow within wells showed that about 60 percent of water from supply well MG-1125 probably is contributed from relatively shallow water-producing fractures from 60 to 125 feet below land surface, but measurable amounts of water are contributed by fractures to a depth of 311 feet below land surface. Chemical samples supported the evidence that shallow fractures probably contribute significant amounts of water to well MG-1125. The large contribution of water from shallow fractures indicates that the area providing part of the recharge to the well is not far removed from the wellhead. Preliminary delineations of the contributing area and the 100-day time-of travel area were computed from a water budget and time-of-travel equation. These delineations provided insight into the size (but not the shape) of the contributing areas. Three other approaches were used and results compared: (1) uniform-flow equation, (2) hydrogeologic mapping, and (3) numerical modeling. The uniform-flow equation predicted a contributing area that seemed unrealistic?extending far across the ground-water divide into an adjacent watershed. Hydrogeologic mapping, if used with the potentiometric surface and constrained by the water budget, produced contributing area that was similar to that from numerical modeling. Numerical modeling allowed the incorporation of anisotropy caused by dipping water-producing units, differing transmissivity values of geologic units, and ground-water withdrawals from nearby supply wells. The numerical modeling showed that groundwater withdrawals from nearby supply wells affected the contributing area to supply well MG-1125 but had less effect on the 100-day time-of-travel area.

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Case study for delineating a contributing area to a well in a fractured siliciclastic-bedrock aquifer near Lansdale, Pennsylvania
Series title:
Water-Resources Investigations Report
Series number:
Year Published:
vii, 46 p. : ill. (some col.), maps (some col.) ; 28 cm.