Evaluation of the Source and Transport of High Nitrate Concentrations in Ground Water, Warren Subbasin, California

Water-Resources Investigations Report 2003-4009

, , , and



Ground water historically has been the sole source of water supply for the Town of Yucca Valley in the Warren subbasin of the Morongo ground-water basin, California. An imbalance between ground-water recharge and pumpage caused ground-water levels in the subbasin to decline by as much as 300 feet from the late 1940s through 1994. In response, the local water district, Hi-Desert Water District, instituted an artificial recharge program in February 1995 using imported surface water to replenish the ground water. The artificial recharge program resulted in water-level recoveries of as much as 250 feet in the vicinity of the recharge ponds between February 1995 and December 2001; however, nitrate concentrations in some wells also increased from a background concentration of 10 milligrams per liter to more than the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) of 44 milligrams per liter (10 milligrams per liter as nitrogen). The objectives of this study were to: (1) evaluate the sources of the high-nitrate concentrations that occurred after the start of the artificial-recharge program, (2) develop a ground-water flow and solute-transport model to better understand the source and transport of nitrates in the aquifer system, and (3) utilize the calibrated models to evaluate the possible effect of a proposed conjunctive-use project. These objectives were accomplished by collecting water-level and water-quality data for the subbasin and assessing changes that have occurred since artificial recharge began. Collected data were used to calibrate the ground-water flow and solute-transport models. Data collected for this study indicate that the areal extent of the water-bearing deposits is much smaller (about 5.5 square miles versus 19 square miles) than that of the subbasin. These water-bearing deposits are referred to in this report as the Warren ground-water basin. Faults separate the ground-water basin into five hydrogeologic units: the west, the midwest, the mideast, the east and the northeast hydrogeologic units. Water-quality analyses indicate that septage from septic tanks is the primary source of the high-nitrate concentrations measured in the Warren ground-water basin. Water-quality and stable-isotope data, collected after the start of the artificial recharge program, indicate that mixing occurs between imported water and native ground water, with the highest recorded nitrate concentrations in the midwest and the mideast hydrogeologic units. In general, the timing of the increase in measured nitrate concentrations in the midwest hydrogeologic unit is directly related to the distance of the monitoring well from a recharge site, indicating that the increase in nitrate concentrations is related to the artificial recharge program. Nitrate-to-chloride and nitrogen-isotope data indicate that septage is the source of the measured increase in nitrate concentrations in the midwest and the mideast hydrogeologic units. Samples from four wells in the Warren ground-water basin were analyzed for caffeine and selected human pharmaceutical products; these analyses suggest that septage is reaching the water table. There are two possible conceptual models that explain how high-nitrate septage reaches the water table: (1) the continued downward migration of septage through the unsaturated zone to the water table and (2) rising water levels, a result of the artificial recharge program, entraining septage in the unsaturated zone. The observations that nitrate concentrations increase in ground-water samples from wells soon after the start of the artificial recharge program in 1995 and that the largest increase in nitrate concentrations occur in the midwest and mideast hydrogeologic units where the largest increase in water levels occur indicate the validity of the second conceptual model (rising water levels). The potential nitrate concentration resulting from a water-level rise in the midwest and

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Evaluation of the Source and Transport of High Nitrate Concentrations in Ground Water, Warren Subbasin, California
Series title:
Water-Resources Investigations Report
Series number:
Year Published:
133 p.