Occurrence of and trends in selected sediment-associated contaminants in Caddo Lake, East Texas, 1940-2002

Water-Resources Investigations Report 2003-4253
In cooperation with the U.S. Environmental Protection Agency, Region 6, Superfund Division
By:

Links

Abstract

Bottom-sediment cores were collected from four sites in Caddo Lake in East Texas during May 2002 for analyses of radionuclides (for age dating), organochlorine pesticides, polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and major and trace elements, and to describe the occurrence and trends of these sediment-associated contaminants. The Goose Prairie Creek and Harrison Bayou sites receive drainage from an area that includes parts of the now-closed Longhorn Army Ammunitions Plant. The mid-lake site is relatively close to dense oil and gas operations in the lake. The Carter Lake site receives minimal discharge from developed areas.

Sediment age (deposition) dates represented in the cores ranged from 1940 to 2002. The only organochlorine compounds detected in all core samples were the DDT degradation products DDE or DDD, and PCB Aroclors 1242, 1254, and 1260 were detected only at the Goose Prairie Creek site. One or more of the DDE concentrations at all sites exceeded a consensus-based threshold effect concentration (on benthic biota), but none exceeded a consensus-based probable effect concentration. The Goose Prairie Creek site had significant downward trends in concentrations of organochlorine compounds, except for no trend in DDE concentrations. The Ammunitions Plant is a possible historical source of the few organochlorine compounds detected at the Goose Prairie Creek and Harrison Bayou sites.

PAH concentrations at all sites were below respective threshold effect concentrations. Highest PAH concentrations at all four sites were of C2- alkylated naphthalenes. Nearly all statistically significant PAH trends in the cores were downward. On the basis of PAH source-indicator ratios, the majority of PAH compounds appear to have originated from uncombusted sources such as leaks or spills from oil and gas operations or vehicles (automobiles, boats, aircraft) in the Caddo Lake area.

Concentrations of several of the eight trace elements with threshold effect concentrations and probable effect concentrations (among 26 analyzed) were above the respective threshold effect concentrations, but all, except one lead concentration at the Goose Prairie Creek site (deposited about 1961), were below respective probable effect concentrations. Among trace element concentrations at the four sites, lead and mercury were consistently relatively high at the Goose Prairie Creek site. Again the Ammunitions Plant, because of its proximity and history of industrial activities, is the suspected primary source. Statistically significant trends in trace element concentrations were mixed, but more were downward than upward.

Computations to indicate the dominant source (atmospheric fallout or drainage area) of mercury to the Caddo Lake sediment core sites (except Carter Lake) indicate that about one-third of the mercury at the Goose Prairie Creek site might result from drainage area sources. No drainage area sources were indicated for the Harrison Bayou and mid-lake sites. Arsenic, cadmium, and zinc concentrations were highest at the Carter Lake site. No relation between the relatively higher trace element concentrations and any potential source of contamination in the Carter Lake drainage area (for example, oil and gas operations, a road, a boat ramp) is indicated.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Occurrence of and trends in selected sediment-associated contaminants in Caddo Lake, East Texas, 1940-2002
Series title Water-Resources Investigations Report
Series number 2003-4253
DOI 10.3133/wri034253
Year Published 2003
Language English
Publisher U.S. Geological Survey
Contributing office(s) Texas Water Science Center
Description v, 88 p.
Country United States
State Texas
Other Geospatial Caddo Lake
Google Analytic Metrics Metrics page
Additional publication details