Geohydrology and quality of water in aquifers in Lucas, Sandusky, and Wood counties, northwestern Ohio

Water-Resources Investigations Report 91-4024




The hydrology and quality of ground water were evaluated for the surficial sand and carbonate aquifers in northwestern Ohio. A locally important surficial sand aquifer in western Lucas County was evaluated on the basis of data from 10 wells completed in undeveloped and developed areas. The carbonate aquifer in Silurian and Devonian bedrock at its northernmost extent on the Ohio mainland was evaluated on the basis of data from previous studies and data from 466 wells and 11 springs. Most data are for the period 1985-88. The unconfined surficial sand aquifer is less than 50 ft. (feet) thick. Clay-rich drift, which restricts vertical movement of water, underlines the aquifer. Recharge is from precipitation, and discharge is by evapotranspiration and by flow to local streams and drainage ditches. Water levels are generally 2 to 8 ft. below land surface and fluctuate a total of about 3.5 ft. seasonally in a forested area. Concentrations of iron and manganese in ground water are excessive in some areas. Waters from shallow drive-point wells in residential areas contained larger concentrations of dissolved solids, hardness, sodium, and chloride than did waters from identical wells in undeveloped areas. The presence of nitrate nitrogen an other selected constituents in ground water in residential areas, and the absence of these constituents in ground water in undeveloped areas, indicate that the surficial sand aquifer has been affected by development. In carbonate aquifer, fractures, bedding-plane joints, and other secondary openings are the principal water-bearing zones. These zones can be areally and stratigraphically separated by low-permeability rock. Leaky artesian or semiconfined conditions predominate beneath most of the 1,400-mi? study area. The aquifer is confined by relatively impermeable underlying shale of Silurian age and overlying clay-rich drift of Quaternary age. Unproductive strata, including evaporites, within the sequence of carbonate rocks also confine some water-bearing zones. The carbonate aquifer is part of a regional ground-water-flow system; however, subsystems such as the eastern karst and central outcrops are locally important. The potentiometric surface indicates that recharge from areas south and west of the study area flows toward discharge areas along major rivers (Maumee, Portage, and Sandusky) , to a buried bedrock valley in central Sandusky County, and to springs and flowing wells. The potentiometric surface flattens markedly near the southern shore of Lake Erie, where ground-water levels approximate those of the lake, indicating a hydraulic connection between the lake and the aquifer. Hydrogeologic characteristics and water-quality data indicate that Lake Erie is not a major source of recharge to the aquifer. Ground-water ages inferred from tritium concentrations and potentiometric-surface maps indicate that recharge from precipitation enters the aquifer by subsurface drainage in karstified strata in eastern Sandusky County and by infiltration in shallow bedrock areas where drift is less than 20 ft. thick. The quality of water in the carbonate aquifer is described with reference to 52 properties and constituents that characterize chemical, radiochemical, bacteriologic, and physical conditions. Ground-water samples from 135 wells and 11 springs are used in the characterization. On the basis of these data, water from the aquifer is generally suitable for drinking and for most domestic purposes. The most areally widespread aesthtic factors limiting the use of ground water are hardness, concentrations of dissolved solids, sulfate and iron, and the presence of hydrogen sulfide. Selected bacteria are commonly present and may compromise the potability of water from the aquifer. Coliform bacteria from surface sources were found in 47 of 143 water samples. Analyses for total coliform bacteria indicate that 36 of the 125 samples from wells maintained for potable supply have bacteria counts of 4

Additional Publication Details

Publication type:
Publication Subtype:
USGS Numbered Series
Geohydrology and quality of water in aquifers in Lucas, Sandusky, and Wood counties, northwestern Ohio
Series title:
Water-Resources Investigations Report
Series number:
Year Published:
U.S. Geological Survey ; Books and Open-File Reports Section [distributor],
xix, 234 p. :ill., maps (some col.) ;28 cm.