Geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin, south-central New Hampshire

Water-Resources Investigations Report 92-4192




The U.S. Geological Survey, in cooperation with the State of New Hampshire, Department of Environmental Services, Water Resources Division has assessed the geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin in south-central New Hampshire. The middle Merrimack River basin drains 469 square miles; 98 square miles is underlain by stratified-drift aquifers. Saturated thickness of stratified drift within the study area is generally less than 40 feet but locally greater than 100 feet. Transmissivity of stratified-drift aquifers is generally less than 2,000 feet squared per day but locally exceeds 6, 000 feet squared per day. At present (1990), ground-water withdrawals from stratified drift for public supply are about 0.4 million gallons per day within the basin. Many of the stratified-drift aquifers within the study area are not developed to their fullest potential. The geohydrology of stratified-drift aquifers was investigated by focusing on basic aquifer properties, including aquifer boundaries; recharge, discharge, and direction of ground-water flow; saturated thickness and storage; and transmissivity. Surficial geologic mapping assisted in the determination of aquifer boundaries. Data from 757 wells and test borings were used to produce maps of water-table altitude, saturated thickness, and transmissivity of stratified drift. More than 10 miles of seismic-refraction profiling and 14 miles of seismic-reflection profiling were also used to construct the water table and saturated-thickness maps. Stratified-drift aquifers in the southern, western, and central parts of the study area are typically small and discontinuous, whereas aquifers in the eastern part along the Merrimack River valley are continuous. The Merrimack River valley aquifers formed in glacial Lakes Merrimack and Hooksett. Many other smaller discontinuous aquifers formed in small temporary ponds during deglaciation. A stratified-drift aquifer in Goffstown was analyzed for aquifer yield by use of a two-dimensional, finite-difference ground-water-flow model. Yield of the Goffstown aquifer was estimated to be 2.5 million gallons per day. Sensitivity analysis showed that the estimate of aquifer yield was most sensitive to changes in hydraulic conductivity. The amount of water induced into the aquifer from the Piscataquog River was most affected by changes in estimates of streambed conductance. Results of analysis of water samples from 10 test wells indicate that, with some exceptions, water in the stratified-drift aquifers generally meets U.S. Environmental Protection Agency primary and secondary drinking-water regulations. Water from two wells had elevated sodium concentrations, waterfront two wells had elevated concentrations of dissolved iron, and waterfront seven wells had elevated concentrations of manganese. Known areas of contamination were avoided during water-quality sampling.

Additional Publication Details

Publication type:
Publication Subtype:
USGS Numbered Series
Geohydrology and water quality of stratified-drift aquifers in the middle Merrimack River basin, south-central New Hampshire
Series title:
Water-Resources Investigations Report
Series number:
Year Published:
U.S. Geological Survey ; U.S. Geological Survey, Earth Science Information Center, Open-File Reports Section [distributor],
1 v. (various pagings) :ill., maps (some col.) ;28 cm.; PGS - 149 p., 4 over-size sheets, scale 1:24,000