Geohydrology of, and nitrogen and chloride in, the glacial aquifer, Milford-Matamoras area, Pike County, Pennsylvania

Water-Resources Investigations Report 93-4109
By:

Links

Abstract

The glacial aquifer that underlies the Routes 209 and 6 corridor between Milford and Matamoras, Pa., is one of the most productive in Pike County. The aquifer is comprised of unconsolidated glacial outwash and kame-terrace deposits that lie within a glacially carved valley now occupied by the Delaware River. Most businesses and residences along this narrow, 7-mile-long corridor rely on individual wells for water supply and septic systems for waste-water disposal. A study of nutrients and chloride in ground water in the glacial aquifer was conducted to determine the effect of these constituents contributed from septic systems and road runoff on ground-water quality. Sources of nutrients and chloride in the recharge zone upgradient of the aquifer include road and parking-lot runoff, septic systems, and precipitation. Nitrate and chloride from these sources can infiltrate and move in the direction of ground-water flow in the saturated zone of the aquifer. A water-table map based on 29 water levels measured in August 1991 indicates that the direction of ground-water flow is from the edges of the valley toward t he Delaware River but is nearly parallel to the Delaware River in the central area of the valley. The average concentrations of nitrogen and chloride in recharge and total annual loads of nitrogen and chloride to ground water were estimated for six areas with different population densities. These estimates assumed a recharge rate to the glacial aquifer of 20 inches per year and a 15 percent loss of chloride and nitrogen in the atmospheric precipitation to surface runoff. The estimated average concentration of nitrogen in recharge ranged from 2.5 to 10 mg/L (milligrams per liter), which corresponds to a total annual load of nitrogen as ammonium released from septic tanks and present in precipitation was oxidized to nitrate as the dominant nitrogen species in ground water. Contributions of nitrogen from septic tanks were greater than contributions from runoff. Observed concentrations of nitrate, which was the most abundant nitrogen species in ground water in t he glacial aquifer, ranged from less than 0.05 to 5.1 mg/L as nitrogen, with a median of 1.1 mg/L as nitrogen. Concentrations of nitrogen measured in ground water were lower than estimated concentrations for recharge suggesting that dissolved nitrogen species may not be conservative in ground water. Nitrate is unstable in anoxic ground water and can be removed by denitrification. Ammonium can be sorbed onto the aquifer materials. Evidence for reducing conditions included a positive correlation between low concentrations of dissolved oxygen and low concentrations of nitrate. The estimated concentration of chloride in recharge ranged from 6.7 to 21 mg/L, and total annual load of chloride to ground water ranged from 19.4 to 50.6 x 10(3) lb/mi2. Chloride is considered to be a chemically conservative ion in ground water. Contributions of chloride to ground water from road salting were greater than contributions from septic tanks. Observed concentrations of chloride in 18 ground-water samples from the glacial aquifer ranged from 2.1 to 32 mg/L, with a median of 17.5 mg/L. Local contamination is indicated by the elevated concentrations of chloride (up to 680 mg/L) detected in four wells located downgradient of an abandoned industry that may have released salts in processing waste. Chloride concentrations in ground water appeared to be greater near major roads and in areas of relatively greater septic-system density than in areas upgradient of roads, farther downgradient from roads, or with less densely spaced septic systems.
Publication type Report
Publication Subtype USGS Numbered Series
Title Geohydrology of, and nitrogen and chloride in, the glacial aquifer, Milford-Matamoras area, Pike County, Pennsylvania
Series title Water-Resources Investigations Report
Series number 93-4109
DOI 10.3133/wri934109
Year Published 1994
Language English
Publisher U.S. Geological Survey
Contributing office(s) Pennsylvania Water Science Center
Description vi, 43 p. :ill., maps ;28 cm.
Google Analytic Metrics Metrics page
Additional publication details