thumbnail

Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California

Water-Resources Investigations Report 93-4137

By:
, , , , and

Links

Abstract

Septic-tank wastewater disposed in 30-foot-deep seepage pits (dry wells) at 46,000 residences is estimated to equal 18 percent of the natural recharge to the sole-source aquifer in the rapidly developing upper Mojave River Basin (Victor Valley) in the high desert northeast of Los Angeles. Vertical rates of movement of the wastewater wetting front through the unsaturated zone at three newly occupied residences ranged from 0.07 to 1.0 foot per day. These rates translate to traveltimes of several months to several years for the wastewater wetting front to reach the water table and imply that wastewater from many disposal systems already has reached the water table, which averages about 150 feet below land surface in the Victor Valley. As wastewater percolates from seepage pits into the adjacent unsaturated zone, the nitrogen present in reduced form is rapidly converted to nitrate. Analyses on soil-core extracts and soil moisturefrom suction lysimeters installed beneath the seepage pits at eight residences showed that nitrate concentrations and nitrate/ chloride ratios generally become lower with increasing depth. The intervals of greatest decline seemed to coincide with finer soil texture or were near the water table. Nitrate-reducing bacteria were tested for and found to be present in soil cores from two residences. Sparse nitrogen-15 data from suction lysimeters at one of these residences, where thenitrate concentration decreased by about one-half at a depth of 200 feet, indicate that the nitrate decline was accompanied by nitrogen-15 enrichment in the residual nitrate with an isotope-separation factor of about -10 permil. Despite the potential input of abundant nitrogen with the domestic wastewater recharge, nitrate concentrations in the area's ground water are generally low. The absence of high nitrate concentrations in the ground water is consistent with the existence of denitrification, a microbial nitrogen-removal mechanism, as wastewater moves through the thick unsaturated zone and mixes with the ground water. The observed low nitrate concentrations also could be explained by a dilution by vertical mixing in the saturated zone and retention of the wastewater in the unsaturated zone. Results of a single-cell mixing model that allows nitrate from wastewater to be mixedinstantaneously with the underlying ground water suggest that measurable increases in nitrate concentration should be expected within 5 to 10 years after wastewater reaches the water table if the mixing depth is less than 100 feet. Although high fecal-coliform densities were measured in wastewater from septic tanks and seepage pits, removal of these enteric bacteria in the unsaturated zone is very effective, as was indicated by their absence in soil only a few feet from the seepage pits. In testing for organic priority pollutants in wastewater, 17 of 85 compounds were detected. Most compounds detected were present in low concentrations, except at one residence where the concentration of three compounds exceeded 100 micrograms per liter. These high concentrations may be a consequence of disposal practices unique to this residence. Extractable organic priority pollutants were not found in any soil cores taken adjacent to seepage pits and, therefore, are not of concern.

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Potential for ground-water contamination from movement of wastewater through the unsaturated zone, upper Mojave River Basin, California
Series title:
Water-Resources Investigations Report
Series number:
93-4137
Edition:
-
Year Published:
1993
Language:
ENGLISH
Publisher:
U.S. Geological Survey ; Earth Science Information Center, Open-File Reports Section [distributor],
Description:
vii, 117 p. :ill., maps ;28 cm.