thumbnail

Surface-geophysical techniques used to detect existing and infilled scour holes near bridge piers

Water-Resources Investigations Report 95-4009

By:
and

Links

Abstract

Surface-geophysical techniques were used with a position-recording system to study riverbed scour near bridge piers. From May 1989 to May 1993. Fathometers, fixed- and swept-frequency con- tinuous seismic-reflection profiling (CSP) systems, and a ground-penetrating radar (GPR) system were used with a laser-positioning system to measure the depth and extent of existing and infilled scour holes near bridge piers. Equipment was purchased commercially and modified when necessary to interface the components and (or) to improve their performance. Three 200-kHz black-and-white chart- recording Fathometers produced profiles of the riverbed that included existing scour holes and exposed pier footings. The Fathometers were used in conjunction with other geophysical techniques to help interpret the geophysical data. A 20-kHz color Fathometer delineated scour-hole geometry and, in some cases, the thickness of fill material in the hole. The signal provided subbottom information as deep as 10 ft in fine-grained materials and resolved layers of fill material as thin as 1 foot thick. Fixed-frequency and swept-frequency CSP systems were evaluated. The fixed-frequency system used a 3.5-, 7.0-, or 14-kHz signal. The 3.5-kHz signal pene- trated up to 50 ft of fine-grained material and resolved layers as thin as 2.5-ft thick. The 14-kHz signal penetrated up to 20 ft of fine-grained material and resolved layers as thin as 1-ft thick. The swept-frequency systems used a signal that swept from 2- to 16-kHz. With this system, up to 50 ft of penetration was achieved, and fill material as thin as 1 ft was resolved. Scour-hole geometry, exposed pier footings, and fill thickness in scour holes were detected with both CSP systems. The GPR system used an 80-, 100-, or 300-megahertz signal. The technique produced records in water up to 15 ft deep that had a specific conductance less than 200x11ms/cm. The 100-MHz signal penetrated up to 40 ft of resistive granular material and resolved layers as thin as 2-ft thick. Scour-hole geometry, the thickness of fill material in scour holes, and riverbed deposition were detected using this technique. Processing techniques were applied after data collection to assist with the interpretation of the data. Data were transferred from the color Fathometer, CSP, and GPR systems to a personal computer, and a commercially available software package designed to process GPR data was used to process the GPR and CSP data. Digital filtering, predictive-deconvolution, and migration algorithms were applied to some of the data. The processed data were displayed and printed as color amplitude or wiggle-trace plots. These processing methods eased and improved the interpretation of some of the data, but some interference from side echoes from bridge piers and multiple reflections remained in the data. The surface-geophysical techniques were applied at six bridge sites in Connecticut. Each site had different water depths, specific conductance, and riverbed materials. Existing and infilled scour holes, exposed pier footings, and riverbed deposition were detected by the surveys. The interpretations of the geophysical data were confirmed by comparing the data with lithologic and (or) probing data.

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Surface-geophysical techniques used to detect existing and infilled scour holes near bridge piers
Series title:
Water-Resources Investigations Report
Series number:
95-4009
Edition:
-
Year Published:
1995
Language:
ENGLISH
Publisher:
U.S. Dept. of the Interior, U.S. Geological Survey ; Earth Science Information Center, Open-File Reports Section [distributor],
Description:
v, 44 p. :ill., maps ;28 cm.