thumbnail

Potential effects of climate change on streamflow, eastern and western slopes of the Sierra Nevada, California and Nevada

Water-Resources Investigations Report 95-4260

By:
, ,

Links

Abstract

Precipitation-runoff models of the East Fork Carson and North Fork American Rivers were developed and calibrated for use in evaluating the sensitivity of streamflow in the north-central Sierra Nevada to climate change. The East Fork Carson River drains part of the rain-shadowed, eastern slope of the Sierra Nevada and is generally higher than the North Fork American River, which drains the wetter, western slope. First, a geographic information system was developed to describe the spatial variability of basin characteristics and to help estimate model parameters. The result was a partitioning of each basin into noncontiguous, but hydrologically uniform, land units. Hydrologic descriptions of these units were developed and the Precipitation- Runoff Modeling System (PRMS) was used to simulate water and energy balances for each unit in response to daily weather conditions. The models were calibrated and verified using historical streamflows over 22-year (Carson River) and 42-year (American River) periods. Simulated annual streamflow errors average plus 10 percent of the observed flow for the East Fork Carson River basin and plus 15 percent for the North Fork American River basin. Interannual variability is well simulated overall, but, at daily scales, wet periods are simulated more accurately than drier periods. The simulated water budgets for the two basins are significantly different in seasonality of streamflow, sublimation, evapotranspiration, and snowmelt. The simulations indicate that differences in snowpack and snowmelt timing can play pervasive roles in determining the sensitivity of water resources to climate change, in terms of both resource availability and amount. The calibrated models were driven by more than 25 hypothetical climate-change scenarios, each 100 years long. The scenarios were synthesized and spatially disaggregated by methods designed to preserve realistic daily, monthly, annual, and spatial statistics. Simulated streamflow timing was not very sensitive to changes in mean precipitation, but was sensitive to changes in mean temperatures. Changes in annual streamflow amounts were amplified reflections of imposed mean precipitation changes, with especially large responses to wetter climates. In contrast, streamflow amount was surprisingly insensitive to mean temperature changes as a result of temporal links between peak snowmelt and the beginning of warm-season evapotranspiration. Comparisons of simulations driven by temporally detailed climate-model changes in which mean temperature changes vary from month to month and simulations in which uniform climate changes were imposed throughout the year indicate that the snowpack accumulates the influences of short-term conditions so that season average climate changes were more important than shorter term changes.

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Potential effects of climate change on streamflow, eastern and western slopes of the Sierra Nevada, California and Nevada
Series title:
Water-Resources Investigations Report
Series number:
95-4260
Edition:
-
Year Published:
1996
Language:
ENGLISH
Publisher:
U.S. Geological Survey ; Earth Science Information Center, Open-File Reports Section [distributor],
Description:
v, 44 p. :ill. ;28 cm.