Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California

Water-Resources Investigations Report 97-4033




The installation of at least 100 residential wells in the town of Atherton, California, during the 198792 drought has raised concerns about the increased potential for land subsidence and salt water intrusion. Data were collected and monitor ing networks were established to assess current processes and to monitor future conditions affect ing these processes. Data include recorded pump age, recorded operation time, and measured pumpage rates from 38 wells; water levels from 49 wells; water chemistry samples from 20 wells, and land-surface elevation data from 22 survey sites, including one National Geodetic Survey estab lished bench mark. Geologic, lithologic, climato logic, well construction, well location, and historical information obtained from available reports and local, state, and Federal agencies were used in this assessment. Estimates of annual residential pumpage from 269 assumed active residential wells in the study area indicate that the average annual total pumping rate is between 395 and 570 acre-feet per year. The nine assumed active institutional wells are estimated to pump a total of about 200 acre- feet per year, or 35 to 50 percent of the total resi dential pumpage. Assuming that 510 acre-feet per year is the best estimate of annual residential pumpage, total pumpage of 710 acre-feet per year would represent about 19 percent of the study area's total water supply, as estimated. Depth-to-water-level measurements in wells during April 1993 through September 1995 typically ranged from less than 20 feet below land surface nearest to San Francisco Bay to more than 70 feet below land surface in upslope areas near exposed bedrock, depending on the season. This range, which is relatively high historically, is attributed to above normal rainfall between 1993 and 1995. Water levels expressed as hydraulic heads indicate the presence of three different hydrologic subareas on the basis of hydraulic-head contour configurations and flow direction. That all measured hydraulic heads in the study area from April 1993 through September 1995 were above sea level indicates that saltwater intrusion was unlikely during this period. The chemistry of 20 well-water samples is characterized as a calcium magnesium carbonate bicarbonate type water. There is no evidence of saltwater intrusion from San Francisco Bay; how ever, water samples from wells nearest the bay and bedrock assemblages indicate a greater concentra tion of dissolved constituents and salinity. Dissolved-solids concentrations of water samples from wells in these areas exceeded 1,000 milli grams per liter, and several samples contained a substantial fraction of sodium and chloride. Water hardness for the 20 wells sampled averaged 471 milligrams per liter as calcium carbonate, which is classified as very hard. One well sample exceeded the primary maximum contaminant level for drinking water in nitrate, several wells exceeded the secondary maximum contaminant level for chloride and sulfate, and all wells sampled exceeded the secondary maximum contaminant level for total dissolved solids. Land-subsidence and the resultant damage because of excessive ground-water pumping, in combination with periodic drought, have a well- documented history in the south San Francisco Bay area. Land-elevation surveying data from 1934 to 1967 indicate that subsidence ranged from 0.1 to approximately 0.5 foot in the vicinity of the study area. It could not be determined from land- surface elevation surveying data from 1993 whether subsidence is currently occurring in the study area.

Additional Publication Details

Publication type:
Publication Subtype:
USGS Numbered Series
Ground-water development and the effects on ground-water levels and water quality in the town of Atherton, San Mateo County, California
Series title:
Water-Resources Investigations Report
Series number:
Year Published:
U.S. Dept. of the Interior, U.S. Geological Survey ; U.S. Geological Survey Information Services [distributor],
v, 31 p. :ill., maps ;28 cm.