thumbnail

Hydrology and Water and Sediment Quality at James Campbell National Wildlife Refuge near Kahuku, Island of Oahu, Hawaii

Water-Resources Investigations Report 99-4171

Prepared in cooperation with the U.S. Fish and Wildlife Service, Department of the Interior
By:
,

Links

Abstract

The James Campbell National Wildlife Refuge occupies two lowland marsh and pond complexes on the northern coastal plain of Oahu: the mostly natural ponds and wetlands of the Punamano Unit and the constructed ponds of the Kii Unit. The U.S. Fish and Wildlife Service manages the Refuge primarily to protect and enhance habitat for four endangered species of Hawaiian waterbirds. Kii Unit is fed by artesian wells and rainfall, whereas Punamano Unit is fed naturally by rainfall, runoff, and ground-water seepage. Streams drain from the uplands into lowland ditches that pass through Kii Unit on their way to the ocean. A high-capacity pump transfers water from the inner ditch terminus at Kii to the ocean outlet channel. Stormwaters also exit the inner ditch system over flood-relief swales near the outlet pump and through a culvert with a one-way valve. A hydrologic investigation was done from November 1996 through February 1998 to identify and quantify principal inflows and outflows of water to and from the Refuge, identify hydraulic factors affecting flooding, document ground-water/surface-water interactions, determine the adequacy of the current freshwater supply, and determine water and sediment quality. These goals were accomplished by installing and operating a network of stream-gaging stations, meteorology stations, and shallow ground-water piezometers, by computing water budgets for the two Refuge units, and by sampling and analyzing water and pond-bottom sediments for major ions, trace metals, and organic compounds. Streamflow during the study was dominated by winter stormflows, followed by a gradual recession of flow into summer 1997, as water that had been stored in alluvial fans drained to lowland ditches. Outflow at the ditch terminus in 1997 was 125 million gallons greater than measured inflow to the coastal plain, mainly reflecting gains from ground water along the ditches between outlying gages and the ditch terminus. Of the measured 1997 outflow, 98 percent was through the Kii outlet pump, with the outlet culvert valve only opening for brief periods during storms. Large volumes of stormflow overflowed the flood-relief swales unmeasured. The largest storm of the study, in November 1996, was estimated to have a flood frequency of about 3 to 4 years. Streamflow exceeded culvert capacity and overtopped Kamehameha Highway at Kalaeokahipa Stream and Hospital ditch. Slight overbank flooding in Kii ditch resulted strictly from high discharge. Minor overbank flooding farther out on the coastal plain probably was caused mainly by the small hydraulic gradients available to convey stormflows along the lowland ditches. Stormwaters flooded Kii ponds and flowed back upstream along Punamano ditch into Punamano marsh, introducing suspended sediment and possibly other contaminants to the Refuge. Two smaller storms in January 1997 resulted in smaller flows and no overbank flooding. The Kii outlet pump ran continuously for 7 days during the November 1996 storm and for 1 to 2 days during the January 1997 storms. During all three storms, the outlet culvert valve opened and the inner ditches overtopped the flood-relief swales, allowing free outflow of water from the inner ditch. Backwater effects hindered drainage during the January 1997 storms at Hospital ditch at Kamehameha Highway, and at Punamano ditch at Nudist Camp Road (where the backflow into Punamano marsh in November 1996 constituted an extreme backwater effect). A probable marine backwater effect was imposed at the ocean outlet ditch during the November 1996 storm through a combination of high spring tides and wave setup from large surf. Whether this backwater effect propagated upstream in the ditches to affect inland sites could not be determined conclusively. A sand plug may have built up in the ocean outlet channel before the November 1996 storm, but if so, it probably washed out prior to, or early in the storm, and was not present at the time of peak stage at inlan

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Hydrology and Water and Sediment Quality at James Campbell National Wildlife Refuge near Kahuku, Island of Oahu, Hawaii
Series title:
Water-Resources Investigations Report
Series number:
99-4171
Edition:
-
Year Published:
2000
Language:
ENGLISH
Publisher:
Geological Survey (U.S.)
Contributing office(s):
Pacific Islands Water Science Center
Description:
vi, 85 p.