Methods and applications of electrical simulation in ground-water studies in the lower Arkansas and Verdigris River Valleys, Arkansas and Oklahoma

Water Supply Paper 1971
By: , and 

Links

Abstract

The Arkansas River Multiple-Purpose Plan will provide year-round navigation on the Arkansas River from near its mouth to Muskogee, Okla., and on the Verdigris River from Muskogee to Catoosa, Okla. The altered regimen in the Arkansas and Verdigris Rivers will affect ground-water conditions in the adjacent alluvial aquifers. In 1957 the U.S. Geological Survey and U.S. Army Corps of Engineers entered into a cooperative agreement for a comprehensive ground-water study of the lower Arkansas and Verdigris River valleys. At the request of the Corps of Engineers, the Geological Survey agreed to provide (1) basic ground-water data before, during, and after construction of the Multiple-Purpose Plan and (2) interpretation and projections of postconstruction ground-water conditions. The data collected were used by the Corps of Engineers in preliminary foundation and excavation estimates and by the Geological Survey as the basis for defining the hydrologic properties of, and the ground-water conditions in, the aquifer. The projections of postconstruction ground-water conditions were used by the Corps of Engineers in the planning, design, construction, and operation of the Multiple-Purpose Plan. Analysis and projections of ground-water conditions were made by use of electrical analog models. These models use the analogy between the flow of electricity in a resistance-capacitance circuit and the flow of a liquid in a porous and permeable medium. Verification provides a test of the validity of the analog to perform as the aquifer would, within the range of historic forces. The verification process consists of simulating the action of historic forces which have acted upon the aquifer and of duplicating the aquifer response with the analog. The areal distribution of accretion can be treated as an unknown and can be determined by analog simulation of the piezometric surface in an aquifer. Comparison of accretion with depth to piezometric surface below land surface shows that accretion decreases with decreasing depth to water level. The decrease in accretion is attributed mostly to the increase in evapotranspiration from the aquifer, and where water levels are very near the land surface, to the rejection of recharge. The maximum accretion and the decrease in accretion with the decrease in depth to water are dependent upon the climate and the thickness and lithology of the fine-grained material overlying the aquifer. Dams on the Arkansas and Verdigris Rivers will impose a direct change in water levels in the aquifers adjacent to the rivers. This change will be attenuated by the resultant change in accretion to the aquifer. The analogs of aquifers in the valleys were used to determine the change in ground-water level from preconstruction to postconstruction conditions.
Publication type Report
Publication Subtype USGS Numbered Series
Title Methods and applications of electrical simulation in ground-water studies in the lower Arkansas and Verdigris River Valleys, Arkansas and Oklahoma
Series title Water Supply Paper
Series number 1971
DOI 10.3133/wsp1971
Edition -
Year Published 1970
Language ENGLISH
Publisher U.S. Govt. Print. Off.,
Description vi, 71 p. :illus., maps (4 fold. in pocket) ;23 cm.
Google Analytic Metrics Metrics page
Additional publication details