thumbnail

Simulation of saltwater movement in the Floridan aquifer system, Hilton Head Island, South Carolina

Water Supply Paper 2331

By:

Links

Abstract

Freshwater to supply Hilton Head Island, S.C., is obtained from the upper permeable zone of the Upper Floridan aquifer. Long-term pumping at Savannah, Ga., and the steadily increasing pumping on Hilton Head Island, have lowered Upper Floridan heads near the center of the island from about 10 feet above sea level to about 6 to 7 feet below sea level. The seaward hydraulic gradient that existed before pumping began has been reversed, thus increasing the potential for saltwater intrusion. Simulations of predevelopment, recent, and future ground-water flow in the Floridan aquifer system beneath the north end of Hilton Head Island and Port Royal Sound are presented. A finite-element model for fluid-density-dependent ground-water flow and solute transport was used in cross section. The general configuration of the simulated predevelopment flowfield is typical of a coastal aquifer having a seaward gradient in the freshwater. The freshwater flows toward Port Royal Sound over an intruding wedge of saltwater. The simulated flowfield at the end of 1983 shows that ground water in the Floridan aquifer system beneath most of Hilton Head Island has reversed its predevelopment direction and is moving toward Savannah. The distribution of chloride concentrations, based on simulation at the end of 1983, is about the same as the predevelopment distribution of chloride concentrations obtained from simulation. Results of two 50-year simulations from 1983 to 2034 suggest that there will be no significant threat of saltwater intrusion into the upper permeable zone of the Upper Floridan aquifer if heads on Hilton Head Island remain at current levels for the next 45 to 50 years. However, if head decline continues at the historical rate, any flow that presently occurs from the north end of the island toward Port Royal Sound will cease, allowing lateral intrusion of saltwater to proceed. Even under these conditions, chloride concentrations in the upper permeable zone of the Upper Floridan aquifer beneath Hilton Head Island should remain below 250 milligrams per liter for the next 45 to 50 years. Aquifer properties and selected boundary conditions were tested with several 1,000-year simulations which show that lateral permeability, transverse dispersivity, and landward boundary flow have the most influence on saltwater movement in the Upper Floridan aquifer.

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Simulation of saltwater movement in the Floridan aquifer system, Hilton Head Island, South Carolina
Series title:
Water Supply Paper
Series number:
2331
Edition:
-
Year Published:
1988
Language:
ENGLISH
Publisher:
U.S. G.P.O.,
Description:
iv, 19 p. :ill., maps ;28 cm.