thumbnail

Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84

Water Supply Paper 2390

By:
, , ,

Links

Abstract

A 1982-84 field study defined the chemistry of water collected from the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Bureau County, Ill. Chemical data were evaluated to determine the principal, naturally occurring geochemical reactions in the unsaturated zone and to evaluate waste-induced effects on pore-water chemistry. Samples of precipitation, unsaturated-zone pore water, and saturated-zone water were analyzed for specific conductance, pH, alkalinity, major cations and anions, dissolved organic carbon, gross alpha and beta radiation, and tritium. Little change in concentration of most major constituents in the unsaturated-zone water was observed with respect to depth or distance from disposal trenches. Tritium and dissolved organic carbon concentrations were, however, dependent on proximity to trenches. The primary reactions, both on-site and off-site, were carbonate and clay dissolution, cation exchange, and the oxidation of pyrite. The major difference between on-site and off-site inorganic water chemistry resulted from the removal of the Roxana Silt and the Radnor Till Member of the Glasford Formation from on-site. Off-site, the Roxana Silt contributed substantial quantities of sodium to solution from montmorillonite dissolution and associated cation-exchange reactions. The Radnor Till Member provided exchange surfaces for magnesium. Precipitation at the site had an ionic composition of calcium zinc sulfate and an average pH of 4.6. Within 0.3 meter of the land surface, infiltrating rainwater or snowmelt changed to an ionic composition of calcium sulfate off-site and calcium bicarbonate on-site and had an average pH of 7.9; below that depth, pH averaged 7.5 and the ionic composition generally was calcium magnesium bicarbonate. Alkalinity and specific conductance differed primarily according to composition of geologic materials. Tritium concentrations ranged from 0.2 (detection limit) to 1,380 nanocuries per liter. The methods of constructing, installing, and sampling with lysimeters were evaluated to ensure data reliability. These evaluations indicate that, with respect to most constituents, the samples retrieved from the lysimeters accurately represented pore-water chemistry.

Additional Publication Details

Publication type:
Report
Publication Subtype:
USGS Numbered Series
Title:
Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois, 1982-84
Series title:
Water Supply Paper
Series number:
2390
Edition:
-
Year Published:
1992
Language:
ENGLISH
Publisher:
U.S.G.P.O. ; U.S. Geological Survey, Book and Open-File Report Sales [distributor],
Description:
vi, 74 p. :ill. ;28 cm.