Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds

Environmental Science & Technology
By:  and 

Links

Abstract

Solid-phase microextraction (SPME) has shown potential as an in situ passive-sampling technique in aquatic environments. The reliability of this method depends upon accurate determination of the partition coefficient between the fiber coating and water (Kf). For some hydrophobic organic compounds (HOCs), Kf values spanning 4 orders of magnitude have been reported for polydimethylsiloxane (PDMS) and water. However, 24% of the published data examined in this review did not pass the criterion for negligible depletion, resulting in questionable Kf values. The range in reported Kf is reduced to just over 2 orders of magnitude for some polychlorinated biphenyls (PCBs) when these questionable values are removed. Other factors that could account for the range in reported Kf, such as fiber-coating thickness and fiber manufacturer, were evaluated and found to be insignificant. In addition to accurate measurement of Kf, an understanding of the impact of environmental variables, such as temperature and ionic strength, on partitioning is essential for application of laboratory-measured Kf values to field samples. To date, few studies have measured Kf for HOCs at conditions other than at 20 degrees or 25 degrees C in distilled water. The available data indicate measurable variations in Kf at different temperatures and different ionic strengths. Therefore, if the appropriate environmental variables are not taken into account, significant error will be introduced into calculated aqueous concentrations using this passive sampling technique. A multiparameter linear solvation energy relationship (LSER) was developed to estimate log Kf in distilled water at 25 degrees C based on published physicochemical parameters. This method provided a good correlation (R2 = 0.94) between measured and predicted log Kf values for several compound classes. Thus, an LSER approach may offer a reliable means of predicting log Kf for HOCs whose experimental log Kf values are presently unavailable. Future research should focus on understanding the impact of environmental variables on Kf. Obtaining the data needed for an LSER approach to estimate Kf for all environmentally relevant HOCs would be beneficial to the application of SPME as a passive-sampling technique.
Publication type Article
Publication Subtype Journal Article
Title Assessment of PDMS-water partition coefficients: implications for passive environmental sampling of hydrophobic organic compounds
Series title Environmental Science & Technology
DOI 10.1021/es101103x
Volume 44
Issue 18
Year Published 2010
Language English
Publisher American Chemical Society
Publisher location Washington, D.C.
Contributing office(s) Branch of Regional Research-Eastern Region, Toxic Substances Hydrology Program
Description 9 p.
First page 6917
Last page 6925
Google Analytic Metrics Metrics page
Additional publication details