Temporal dynamics of estuarine phytoplankton: A case study of San Francisco Bay

Hydrobiologia
By: , and 

Links

Abstract

Detailed surveys throughout San Francisco Bay over an annual cycle (1980) show that seasonal variations of phytoplankton biomass, community composition, and productivity can differ markedly among estuarine habitat types. For example, in the river-dominated northern reach (Suisun Bay) phytoplankton seasonality is characterized by a prolonged summer bloom of netplanktonic diatoms that results from the accumulation of suspended particulates at the convergence of nontidal currents (i.e. where residence time is long). Here turbidity is persistently high such that phytoplankton growth and productivity are severely limited by light availability, the phytoplankton population turns over slowly, and biological processes appear to be less important mechanisms of temporal change than physical processes associated with freshwater inflow and turbulent mixing. The South Bay, in contrast, is a lagoon-type estuary less directly coupled to the influence of river discharge. Residence time is long (months) in this estuary, turbidity is lower and estimated rates of population growth are high (up to 1-2 doublings d-1), but the rapid production of phytoplankton biomass is presumably balanced by grazing losses to benthic herbivores. Exceptions occur for brief intervals (days to weeks) during spring when the water column stratifies so that algae retained in the surface layer are uncoupled from benthic grazing, and phytoplankton blooms develop. The degree of stratification varies over the neap-spring tidal cycle, so the South Bay represents an estuary where (1) biological processes (growth, grazing) and a physical process (vertical mixing) interact to cause temporal variability of phytoplankton biomass, and (2) temporal variability is highly dynamic because of the short-term variability of tides. Other mechanisms of temporal variability in estuarine phytoplankton include: zooplankton grazing, exchanges of microalgae between the sediment and water column, and horizontal dispersion which transports phytoplankton from regions of high productivity (shallows) to regions of low productivity (deep channels). Multi-year records of phytoplankton biomass show that large deviations from the typical annual cycles observed in 1980 can occur, and that interannual variability is driven by variability of annual precipitation and river discharge. Here, too, the nature of this variability differs among estuary types. Blooms occur only in the northern reach when river discharge falls within a narrow range, and the summer biomass increase was absent during years of extreme drought (1977) or years of exceptionally high discharge (1982). In South Bay, however, there is a direct relationship between phytoplankton biomass and river discharge. As discharge increases so does the buoyancy input required for density stratification, and wet years are characterized by persistent and intense spring blooms. ?? 1985 Dr W. Junk Publishers.

Publication type Article
Publication Subtype Journal Article
Title Temporal dynamics of estuarine phytoplankton: A case study of San Francisco Bay
Series title Hydrobiologia
DOI 10.1007/BF00048693
Volume 129
Issue 1
Year Published 1985
Language English
Publisher location Kluwer Academic Publishers
Contributing office(s) California Water Science Center, San Francisco Bay-Delta, Pacific Regional Director's Office
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Hydrobiologia
First page 153
Last page 176
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details