Three-dimensional trend mapping from wire-line logs

Journal of the International Association for Mathematical Geology
By:  and 

Links

Abstract

Mapping of lithofacies and porosities of stratigraphic units is complicated because these properties vary in three dimensions. The method of moments was proposed by Krumbein and Libby (1957) as a technique to aid in resolving this problem. Moments are easily computed from wireline logs and are simple statistics which summarize vertical variation in a log trace. Combinations of moment maps have proved useful in understanding vertical and lateral changes in lithology of sedimentary rock units. Although moments have meaning both as statistical descriptors and as mechanical properties, they also define polynomial curves which approximate lithologic changes as a function of depth. These polynomials can be fitted by least-squares methods, partitioning major trends in rock properties from finescale fluctuations. Analysis of variance yields the degree of fit of any polynomial and measures the proportion of vertical variability expressed by any moment or combination of moments. In addition, polynomial curves can be differentiated to determine depths at which pronounced expressions of facies occur and to determine the locations of boundaries between major lithologic subdivisions. Moments can be estimated at any location in an area by interpolating from log moments at control wells. A matrix algebra operation then converts moment estimates to coefficients of a polynomial function which describes a continuous curve of lithologic variation with depth. If this procedure is applied to a grid of geographic locations, the result is a model of variability in three dimensions. Resolution of the model is determined largely by number of moments used in its generation. The method is illustrated with an analysis of lithofacies in the Simpson Group of south-central Kansas; the three-dimensional model is shown as cross sections and slice maps. In this study, the gamma-ray log is used as a measure of shaliness of the unit. However, the method is general and can be applied, for example, to suites of neutron, density, or sonic logs to produce three-dimensional models of porosity in reservoir rocks. ?? 1985 Plenum Publishing Corporation.
Publication type Article
Publication Subtype Journal Article
Title Three-dimensional trend mapping from wire-line logs
Series title Journal of the International Association for Mathematical Geology
DOI 10.1007/BF01032935
Volume 17
Issue 4
Year Published 1985
Language English
Publisher location Kluwer Academic Publishers-Plenum Publishers
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of the International Association for Mathematical Geology
First page 485
Google Analytic Metrics Metrics page
Additional publication details