thumbnail

Field observations of slush ice generated during freeze-up in arctic coastal waters

Marine Geology
By:  and 

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

In some years, large volumes of slush ice charged with sediment are generated from frazil crystals in the shallow Beaufort Sea during strong storms at the time of freeze-up. Such events terminate the navigation season, and because of accompanying hostile conditions, little is known about the processes acting. The water-saturated slush ice, which may reach a thickness of 4 m, exists for only a few days before freezing from the surface downward arrests further wave motion or pancake ice forms. Movements of small vessels and divers in the slush ice occurs only in phase with passing waves, producing compression and rarefaction, and internal pressure pulses. Where in contact with the seafloor, the agitated slush ice moves cobble-size material, generates large sediment ripples, and may possibly produce a flat rampart observed on the arctic shoreface in some years. Processes charging the slush ice with as much as 1000 m3 km-2 of sediment remain uncertain, but our field observations rule out previously proposed filtration from turbid waters as a likely mechanism. Sedimentary particles apparently are only trapped in the interstices of the slush ice rather than being held by adhesion, since wave-related internal pressure oscillations result in downward particle movement and cleansing of the slush ice. This loss of sediment explains the typical downward increase in sediment concentration in that part of the fast-ice canopy composed largely of frazil ice. The congealing slush ice in coastal water does not become fast ice until grounded ridges are formed in the stamukhi zone, one to two months after freeze-up begins. During this period of new-ice mobility, long-range sediment transport occurs. The sediment load held by the fast-ice canopy in the area between the Colville and Sagavanirktok River deltas in the winter of 1978-1979 was 16 times larger than the yearly river input to the same area. This sediment most likely was rafted from Canada, more than 400 km to the east, during a brief time period in the previous fall. Ocean turbulence is greatly reduced while the congealing slush ice drifts about. Therefore, new ice then forming in intervening open-water areas is clean. These events explain the patchy appearance of the fast ice after the summer snowmelt. More work on the important phenomena reported here is needed to close a major gap in the knowledge of the arctic marine environment. ?? 1987.
Publication type Article
Publication Subtype Journal Article
Title Field observations of slush ice generated during freeze-up in arctic coastal waters
Series title Marine Geology
Volume 77
Issue 3-4
Year Published 1987
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Marine Geology
First page 219
Last page 231
Google Analytic Metrics Metrics page
Additional publication details