Metasomatic oxidation of upper mantle periodotite

Contributions to Mineralogy and Petrology
By: , and 

Links

Abstract

Examination of Fe3+ in metasomatized spinel peridotite xenoliths reveals new information about metasomatic redox processes. Composite xenoliths from Dish Hill, California possess remnants of magmatic dikes which were the sources of the silicate fluids responsible for metasomatism of the peridotite part of the same xenoliths. Mo??ssbauer spectra of mineral separates taken at several distances from the dike remnants provide data on Fe3+ contents of minerals in the metasomatized peridotite. Clinopyroxenes contain 33% of total iron (FeT) as Fe3+ (Fe3+/FeT=0.33); orthopyroxenes contain 0.06-0.09 Fe3+/FeT; spinels contain 0.30-0.40 Fe3+/FeT; olivines contain 0.01-0.06 Fe3+/FeT; and metasomatic amphibole in the peridotite contains 0.85-0.90 Fe3+/FeT. In each mineral, Fe3+ and Fe2+ cations per formula unit (p.f.u.) decrease with distance from the dike, but the Fe3+/FeT ratios of each mineral do not vary. Clinopyroxene, spinel, and olivine Fe3+/FeT ratios are significantly higher than in unmetasomatized spinel peridotites. Metasomatic changes in Fe3+/FeT ratios in each mineral are controlled by the oxygen fugacity of the system, but the mechanism by which each phase accommodates this ratio is affected by crystal chemistry, kinetics, rock mode, fluid composition, fluid/rock ratio, and fluid-mineral partition coefficients. Ratio increases in pyroxene and spinel occur by exchange reactions involving diffusion of Fe3+ into existing mineral grains rather than by oxidation of existing Fe2+ in peridotite mineral grains. The very high Fe3+/FeT ratio in the metasomatic amphibole may be a function of the high Fe3+/FeT of the metasomatic fluid, crystal chemical limitations on the amount of Fe3+ that could be accommodated by the pyroxene, spinel, and olivine of the peridotite, and the ability of the amphibole structure to accommodate large amounts of 3 + valence cations. In the samples studied, metasomatic amphibole accounts for half of the bulk-rock Fe2O3. This suggests that patent metasomatism may produce a greater change in the redox state of mantle peridotite than cryptic metasomatism. Comparison of the metasomatized samples with unmetasomatized peridotites reveals that both Fe2+ and Fe3+ cations p.f.u. were increased during metasomatism and 50% or more of iron added was Fe3+. With increasing distance from the dike, the ratio of added Fe3+ to added Fe2+ increases. The high Fe3+/FeT of amphibole and phlogopite in the dikes and in the peridotite, and the high ratios of added Fe3+/added Fe2+ in pyroxenes and spinel suggest that the Fe3+/FeT ratio of the metasomatic silicate fluid was high. As the fluid perolated through and reacted with the peridotite, Fe3+ and C-O-H volatile species were concentrated in the fluid, increasing the fluid Fe3+/FeT. ?? 1991 Springer-Verlag.
Publication type Article
Publication Subtype Journal Article
Title Metasomatic oxidation of upper mantle periodotite
Series title Contributions to Mineralogy and Petrology
DOI 10.1007/BF00306483
Volume 109
Issue 2
Year Published 1991
Language English
Publisher location Springer-Verlag
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Contributions to Mineralogy and Petrology
First page 252
Last page 264
Google Analytic Metrics Metrics page
Additional publication details