The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes

International Journal of Coal Geology
By: , and 

Links

Abstract

Peat has been studied in several geologic settings: (1) glaciated terrain in cold temperate Maine and Minnesota, U.S.A.; (2) an island in the Atlantic Ocean off the coast of Maine, where sea level is rising; (3) the warm temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often; and (4) the tropical coast of Sarawak, Malaysia, and the tropical delta of the Batang Hari River, Sumatra, Indonesia. Most of these deposits are domed (ombrotrophic or partly ombrotrophic) bogs in which peat accumulation continued above the surface of the surrounding soil. However, the bogs of the U.S. Atlantic and Gulf Coastal Plains are comparatively not as domed, and many have almost level surfaces.

In some bogs, aquatic or semi-aquatic plant materials accumulated, replaced water in the depressions, and formed a surface on which marsh or swamp vegetation could subsequently live, die, and accumulate. In others, the plant materials accumulated initially on level silt or sand surfaces supporting marshes or swamps. As the peat dome formed, plants growing on it changed from luxuriant ones near the base of the dome, where nutrients were brought into the bog by surface and ground water, to stunted ones at the top of the dome, where the raised bogs are fed by nutrient-poor precipitation.

The physical and chemical changes that take place in the sequence of environments from the pond stage of deposit development, through the grassy marsh stage, through the forested swamp stage, and finally through the heath dome stage can be measured in terms of acidity and ash, volatile matter, carbon, hydrogen, nitrogen, sulfur and oxygen contents, as well as in the kind and distribution of trace elements. The organic and inorganic contents of the deposits relate to geomorphology, and geomorphology relates to their settings. As models of coal formation, some domed peat deposits may help in solving problems of distribution and character of ancient coal beds. But clearly not all peat deposits are precursors of coal. Most Holocene peat deposits are subject to destruction by erosion, fire and decomposition through microbial and chemical oxidation before burial. The best environments for coal precursors have biomass accumulation, a continuously rising water table within the mass, and minimum influx of clay and silt until preservation by burial. The most suitable settings for future economic coal deposits are domed bogs that accumulate thick, widespread peat having low ash and low sulfur contents.

The ombrotrophic peat deposits of tropical Sarawak and Sumatra are thick and extensive, contain low-ash and low-sulfur peat, and have high heating values. They are considered to be the best tropical coal analogs because of their extent and chances of preservation; the base of the peat is below adjacent river levels, and chemical and structural conditions are favorable for accumulation.

Publication type Article
Publication Subtype Journal Article
Title The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes
Series title International Journal of Coal Geology
DOI 10.1016/0166-5162(89)90049-9
Volume 12
Issue 1-4
Year Published 1989
Language English
Publisher Elsevier
Description 52 p.
First page 105
Last page 156
Google Analytic Metrics Metrics page
Additional publication details